UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA
UNAN-LEON
AREA DE CONOCIMIENTO CIENCIAS Y TECNOLOGIA
AREA ESPECIFICA INGENIERIA EN SISTEMA DE INFORMACION

INGENIERIA EN SISTEMA DE INFORMACION

Desarrollo de una Aplicacion Multiplataforma para la Gestion Eficiente de

Citas Médicas.
Tesis para optar al titulo de Ingeniero en Sistemas de Informacion
AUTORES:
Br. KATHERINNE JULISSA CASTRO GONZALEZ.
Br. FELIX SAMIR MEJIA MENDOZA.
Br. MARIO RAMON SANCHEZ QUIROZ.
TUTOR:

Licda. DAVINIA ALEJANDRA QUIROZ ROQUE.

Ledn, Nicaragua 13 de junio del 2025

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA
UNAN-LEON
Area de Conocimiento Ciencias y Tecnologia

Area Especifica Ingenieria En Sistemas de Informacion

INGENIERIA EN SISTEMA DE INFORMACION

Desarrollio de una Aplicacion Multiplataforma para la Gestion
Eficiente de Citas Médicas.
Tesis para optar al titulo de Ingeniero en Sistema de Informacién
AUTORES:

BR: KATHERINNE JULISSA CASTRO GONZALEZ

BR: FELIX SAMIR MEJIA MENDOZA

BR: MARIO RAMON SANCHEZ QUIROZ

TUTOR(A):

Licda. DAVINIA ALEJANDRA QUIROZ ROQUE

Ledn, Nicaragua 13 de junio del 2025

2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

Resumen

El presente proyecto desarrolla un sistema integral para la gestion de citas médicas,
combinando una aplicacion web construida con ASP.NET Core MVC y una
aplicacion movil desarrollada en Flutter. Ambas plataformas trabajan de forma
conjunta bajo una arquitectura cliente-servidor, permitiendo a pacientes, doctores

y administradores interactuar con el sistema de manera eficiente y segura.

La aplicacion web, disefiada para su uso por personal médico y administrativo, sigue
el patrén de diseiio Modelo-Vista-Controlador (MVC) y utiliza Entity Framework
Core para la interaccion con una base de datos MySQL. Incluye médulos para la
gestion de doctores, especialidades, citas médicas y envio de confirmaciones por

correo electréonico mediante SMTP.

Por otro lado, la aplicacion movil esta dirigida principalmente a los pacientes y fue
desarrollada en Flutter, usando Dart como lenguaje de programacion. Implementa
servicios de Firebase como backend, incluyendo autenticacion, base de datos en
la nube (Cloud Firestore), almacenamiento local con sqflite, y notificaciones con
Firebase Cloud Messaging. El patron MVVM y la separacién de logica permiten

una arquitectura clara y mantenible.

El sistema permite a los usuarios programar y gestionar citas medicas, visualizar
expedientes, comunicarse con médicos y recibir notificaciones. Los doctores
pueden gestionar sus agendas y editar expedientes, mientras que el director tiene
control administrativo total. La integracion entre ambas plataformas se realiza

mediante APl REST, garantizando sincronizacion y escalabilidad.

Este proyecto demuestra la viabilidad técnica de un sistema de salud digital
accesible desde multiples plataformas, promoviendo la eficiencia en la atencion

médica.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Dedicatoria

Primeramente, agradezco a Dios, fuente de sabiduria, fortaleza y esperanza, por
haberme guiado en cada etapa de este camino. Sin Su presencia constante, nada

de esto habria sido posible.

A mi madre Johanna Gonzalez, mi pilar incondicional, gracias por tu amor, tus
sacrificios silenciosos y tu fe en mi incluso cuando yo dudaba. Tu apoyo constante,
tus palabras de aliento y tu ejemplo de perseverancia han sido la base sobre la cual

se construye este logro. Esta meta es tan tuya como mia.

A mifamilia y amigos, gracias por estar cerca, por su comprension en los momentos

dificiles y por compartir conmigo alegrias y desafios.

A todos quienes, de una forma u otra, contribuyeron con su tiempo, su conocimiento

0 su carifio, les estoy profundamente agradecido.

Katherinne Gonzalez

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Dedicatoria

Con todo mi amor y gratitud, dedico este logro a tres mujeres fundamentales en mi

vida:

A mi querida mamita Lidia Aguilar, por ser mi refugio, por sus oraciones, su amor
incondicional y por ensefiarme con su ejemplo el valor de la perseverancia y la

humildad. Su fortaleza silenciosa ha sido un motor constante en mi camino.

A mi mama Lisbett, por cada sacrificio, por cada palabra de aliento y por creer en
mi incluso cuando yo misma lo dudaba. Gracias por ser mi apoyo inquebrantable,
por impulsarme a seguir adelante y por sostenerme con su amor en los momentos

dificiles.

A mi tia Jasary, por estar siempre presente con su carifio, consejos y compania. Su
apoyo ha sido una luz constante a lo largo de esta carrera, y sus palabras han sido

guia en los momentos de incertidumbre.

A ustedes, que con su amor y apoyo han sido el pilar de mis logros, les dedico este

triunfo con todo mi corazon.

Félix Mejia

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Dedicatoria

Agradezco principalmente a Dios, por haberme dado la vida, la salud y la infinita
sabiduria para iluminar cada paso en este camino. Su presencia ha sido mi

fortaleza, mi refugio y mi fuente de inspiracién para seguir adelante.

A mis amados padres, quienes, con su amor incondicional, su sacrificio constante y
su fe inquebrantable en mi, fueron el motor de mis suefnos y el pilar fundamental de

mi formacion. Esta tesis es un reflejo de su esfuerzo y dedicacion.

A mis hermanos, por su alegria, su apoyo incondicional y por los momentos

compartidos que hicieron mas ligera la carga.

A mi familia y amigos, por cada palabra de aliento, por su comprension y por ser la
compania perfecta en este trayecto. Sin su apoyo, este logro no hubiera sido

posible.

Mario Sanchez

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

indice

Lo T LT o o o o 8
X = Lo [o3 |4 01> 0 1 o 2
Antecedentes: ... 3
Planteamiento del Problema ... 4
Preguntas de investigacion: ... 5
Pregunta general: ... 5
Preguntas especifiCas:cccccceriiiiiiiiiiiiiiriicr e 5
JUSTIfICACION: ... e e nnnas 6
L0 o =1 4 Y X PPN 7
Objetivo general: ... —————— 7
Objetivos eSPecCifiCoS:ccuuiiiiiiiccci it e 7
1T F= T oo TR0 I =Y o o o 1 8
Arquitectura y Organizacidn del Sistemaccccceeciiiimireccci e, 8
Patrones de Diseo Utilizados..........cccemrmmmmmmminiiiirrrrsseesisnss e 8
Arquitectura General del Sistema...........ccovveeciiiiinicc 9
Patron MVC en ASP.NET Core Web ... e 12
Seguridad y Control de ACCESO0ciriirriiemmmmniiriinii s 17
Integracion con MAdulo MOViIl............ooeeee e e 21
Relaciones entre entidades...........ccivveciiiimniccirre 40
Seguridad Web.........oieircrrtec s s e e e e n e 41
Base de Datos Local: Sqflite ... 59
Backend en la Nube: Firebaseccccciiiimmieiiiiiicrr e 60
Firebase Firestore para Almacenamiento en la Nubeccoovrrmnirrrennee. 71
Disefno Metodolégico: Aplicacion V\[eb y Android para la Gestion de Citas
Médicas utilizando la Metodologia Agil SCRUM Estandar...............cccoeuuunnnens 85
1= o X 86
0o 0 Lo LW = T o R 94
(R o074 L= g T F= Td e 1o 96
Referencias bibliografica: ... 97
Cronograma de actividades...........ccooiiiiiiiiiiiiiii 99

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

indice de imagenes
llustraciéon 1: Define la estructura de una cita médica con sus propiedades clave

para el almacenamiento de datos. ... 23
llustracion 2: Muestra la Iégica para enviar correos desde Gmail mediante SMTP,
incluyendo servidor, puerto, usuario y contrasena.coeeeueeiieeeeeeiiineeeeeeennnnn. 29
llustracion 3: Muestra la légica del controlador EmailService.............cccccoeeeeee. 29
llustracion 4: Muestra la Iégica del appsettings.jsom para conectar con la base de
0 = o TSR 30

llustracion 5: Muestra ejemplo de Iégica en program.cs para el AppDbContext ... 31
llustracion 6: Muestra ejemplo de l6gica del AppDbContext para conexién entre

70T L1 o L 3PP 31
llustracion 7: Muestra ejemplo de la l6gica de un modelo paciente. 33
llustracion 8: Muestra ejemplo de légica del cdédigo AppDbContext...................... 34
llustracion 9: muestra légica de configuracion en Program.cs..........ccccceeveeeeeennnnn. 34
llustracion 10: Muestra como hacer una consulta con cédigo SQL.ccc...... 35
llustracion 11: Muestra ejemplo de logica basica de operaciéon CRUD créate. 35
llustracion 12: Muestra ejemplo de Iégica basica de operacion CRUD Leer......... 36

llustracion 13: Muestra ejemplo de légica basica de operacion CRUD actualizar. 36
llustracion 14: Muestra ejemplo de légica basica de operacion CRUD Eliminar. .. 36
llustracion 15: Muestra logica de codigo para la conexion de la base de datos.... 38

llustracion 16: Muestra logica de codigo completo AppDbContext.eeeennnn... 39
llustracion 17: Muestra pastes de la l6gica del AppDbContextcceevveevennnnn. 40
llustracion 18: Muestra las tablas de la base de datos.ccccceiviiiiiiiinieeeeennnnn. 41
llustracién 19: Muestra la l6gica para trabajar los roles.ccoooeviiiiiiiiiienenn. 42
llustracién 20: Muestra controlador ASP.NET Core que permite a usuarios con rol
"Doctor" ver expedientes simulados por ID.c.oeiiiiiiiiiii e 42
llustracion 21: Muestra app.UseHttpsRedirection();que redirige las solicitudes
HTTP a HTTPS para proteger la comunicacion.ccooveiveiiiiiieeeeiiiieeeeeeeeeennn 43
llustracién 22: muestra la l6gica de validacion de roles al iniciar sesion............... 44
llustracion 23: muestra la I6gica de autorizacién de rol basada en firebase 46
llustracién 24: muestra la l6gica para evitar el acceso usuarios no autorizados ... 47
llustracion 25: muestra la funcion para cerrar el perfil del usuario........................ 48
llustracion 26: muestra la Iégica de creacion y asignacidn de roles especificos ... 49
llustracién 27: muestra la l6gica de autorizacidén de rolesccccoevvvviiiviininenennn. 49
llustracion 28: muestra la implementacién de menu, segun la asignacion de roles
... 50
llustracion 29: muestra el registro de los usuarios registradosc..cccoceeveeneen. 50
llustracion 30: muestra la Iégica para consultar datos y redireccionamiento de perfil
= | IO E= T o = 151 (o | =T o TP 51
llustracion 31: muestra la implementacion de reglas de acceso..............evveeennnnn. 51
llustracién 32: visualizacion de la estructura de datos registrados para agendar
(071 = T S PP PPP PPN 62

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

llustracion 33
llustracion 34
usuarios
llustracion 35

llustracion 36
accesibles. ...

: muestra la l6gica de personalizacion de estilos aplicados en los

.. 78
: muestra la logica de los formularios utilizados para registrar
.. 80
: muestra la l6gica para verificar el rol del usuario almacenado en los
registros y redirigirlo a su perfil correspondiente.ccooiiiiiiiiiiie e 81
: muestra la logica de personalizacion de textos, colores y controles
.. 82
muestra la implementacion de herramientas responsive................ 84

[lustracién 37:
[lustracion 38:
llustracion 39:
[lustracion 40:
[lustracion 41:
llustracion 42:
[lustracion 43:
llustracion 44
[lustracion 45:
[lustracion 46:
llustracion 47:

llustracion 48:

confirmar.

llustracion 49:
llustracion 50:
llustracion 51:

citas:

llustracién 52:
llustracién 53:
llustracion 54
[lustracion 55:
llustracion 57:

llustracion 57
llustracion 56
llustracion 59

Muestra la pagina de inicio de la aplicacion web. 86
Muestra cdmo se registra un usuario (Paciente) por primera vez.. 86
Muestra el inicio sesién del usuario creado 87
Muestra la interfaz de inicio de sesién de un usuario (Paciente) ... 87

Muestra cOmo se agenda.coovviiiiiiiiiii i 87
Muestra las opciones de especialidades para agendar cita........... 88
Muestra que ya se agendo una cita:c.ccceeviviiiiiiiiiii e, 88
Muestra el perfil de usuario con rol de administrador. 88
Muestra la lista de pacientes registrados en la pagina. 89
Muestra los detalles de la cita de un paciente que tiene agendada
.. 89
Muestra los detalles de la cita de un paciente con cita sin agendar o
.. 90

Muestra la lista de doctores con los que se pueden agendar citas.90
Muestra cdmo se agrega un doctor desde el perfil administrador.. 91
Muestra las especialidades que estan disponibles para agendar

.. 91
Pantallas de introduccién a la aplicacion.............ccccoecevveeeeiiieennnn. 92
seleccion de rol del USUArio........cooevvieiiiiie e, 92
vista del perfil del direCtor............ooovviiiiiiiii e 93

vista de inicio de sesidn y registro.ccceeviiieiiiiiiiiciii e 93

Pantalla de lista de doctorescoooveeiiiiiiiiii e, 94
:Pantalla de funcion de especialidadesccccoeeeviiiiiiiiiieeeennn... 94
> vista citas registradas...........eeeeeiiii 94
: Pantalla de asignacion de horariosc.cceeieviiiiiiiiiiceieeceee, 94

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Introduccién

La gestidon eficiente de servicios médicos representa un reto constante en los
sistemas de salud de paises en desarrollo como Nicaragua, donde aun prevalece el
uso de métodos tradicionales para la programacién de citas. Esta situacion genera
ineficiencias administrativas, tiempos de espera prolongados y una experiencia

deficiente para el paciente.

En respuesta a esta problematica, el presente proyecto de tesis propone el
desarrollo de un sistema multiplataforma para la gestion de citas médicas,
compuesto por una aplicacion web implementada con ASP.NET Core MVC y una
aplicacion movil desarrollada en Flutter. Ambas plataformas se comunican mediante
servicios REST y emplean Firebase como backend para autenticacion,

almacenamiento en la nube, notificaciones y sincronizacién de datos.

El objetivo principal es optimizar el proceso de agendamiento y seguimiento de citas,
mejorar la comunicacion entre los distintos roles del sistema (paciente, doctor y
director) y reducir la carga operativa en los centros de salud. Esta solucién
tecnolégica busca aportar una herramienta escalable, moderna y adaptada al
contexto local, contribuyendo a la transformacion digital del sector salud en

Nicaragua.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Agradecimiento

Dedicamos este proyecto a nuestras familias, quienes han sido nuestro pilar
fundamental durante todo este proceso académico. Su apoyo incondicional,

comprension y palabras de aliento han sido claves para alcanzar esta meta.

Agradecemos también a nuestros docentes y asesores, por guiarnos con
compromiso, paciencia y dedicacion, y por contribuir significativamente a nuestro

crecimiento profesional y personal.

Asimismo, dedicamos este trabajo a todas las personas que creen en el poder de la
tecnologia para transformar realidades y mejorar la calidad de vida. Este proyecto
es una muestra de nuestro esfuerzo conjunto, con la conviccion de aportar

soluciones utiles a la sociedad.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Antecedentes:

En Nicaragua, la transformacion digital ha comenzado a impactar diversos sectores,
incluida la salud. La necesidad creciente de optimizar el acceso, la eficiencia y la
calidad de los servicios meédicos ha impulsado el desarrollo de soluciones digitales

orientadas a modernizar procesos tradicionales, como la gestién de citas médicas.

En este contexto, instituciones educativas han apostado por la integracion de la
tecnologia en propuestas innovadoras que abordan problemas reales del entorno.
Estas iniciativas no solo fortalecen la formacion profesional, sino que también

contribuyen al desarrollo de herramientas utiles para la sociedad.

Uno de estos proyectos es la aplicacion web “Medicall”, desarrollada en Juigalpa
utilizando React, Redux y Firebase, bajo la metodologia agil SCRUM. Disefiada
para facilitar la gestion de citas médicas y consultas en linea, Medicall busca reducir
la automedicacion, evitar aglomeraciones y modernizar la atencion primaria.
Presentado en el documento institucional de la UNAN-Managua (2020) por
estudiantes de la Direccion de Docencia de Grado, este proyecto forma parte de
una propuesta pedagogica que promueve la formacion integral, el pensamiento
critico, la responsabilidad social y el compromiso con el desarrollo humano

sostenible.

Paralelamente, en la Universidad Nacional de Ingenieria (UNI-Managua), se
desarrollé en 2021 un sistema web para la gestion de citas y expedientes médicos
en la red de sucursales de la Clinica San Benito. Implementado con PHP, MySQL,
HTMLS5 y Bootstrap, bajo el modelo de desarrollo en cascada, su principal aporte
fue la automatizacion de procesos que anteriormente se realizaban manualmente,

reduciendo tiempos de espera y mejorando la continuidad de la atencién médica.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Planteamiento del Problema

En Nicaragua, una parte significativa de los centros de salud aun utiliza métodos
tradicionales para la programacion de citas meédicas, como listas manuales,
llamadas telefénicas y atencion presencial directa. Esta situaciéon ha generado
diversas problematicas que afectan tanto la eficiencia del sistema de salud como la

calidad del servicio brindado a los pacientes.

Entre los principales inconvenientes se encuentran los largos tiempos de espera, la
saturacion de las instalaciones médicas, el ausentismo por falta de recordatorios, y
la desorganizacion en la gestion de turnos. Estas dificultades no solo repercuten en
la experiencia del paciente, sino que también afectan la planificacion interna de los

centros médicos y limitan el aprovechamiento éptimo de los recursos disponibles.

A pesar de que existen avances internacionales en la digitalizacion de estos
procesos, en Nicaragua aun es limitado el uso de soluciones tecnolégicas que
permitan automatizar y optimizar la gestién de citas médicas. Esto evidencia una
brecha importante entre las necesidades reales del sistema de salud y la oferta

tecnoldgica existente.

Ante este panorama, surge la necesidad de desarrollar una herramienta digital
accesible, intuitiva y eficiente que permita transformar la manera en que se
organizan las citas médicas. Tal solucion debe responder a las condiciones
tecnoldgicas del pais y atender tanto a los pacientes como al personal médico y

administrativo.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Preguntas de investigacion:

Pregunta general:

¢, Como puede una aplicacion multiplataforma optimizar la gestidon de citas médicas,
para facilitar la interaccion con los usuarios, reducir el ausentismo y garantizar una

arquitectura técnica eficiente?

Preguntas especificas:

e ;Qué caracteristicas debe tener una interfaz de usuario para ser considerada
intuitiva y adaptable tanto en web como en dispositivos méviles?

e ;Qué tipo de notificaciones (SMS, correo electronico) resultaria mas efectivo
para recordar las citas médicas a los pacientes?

e ;Cuales serian los beneficios técnicos y funcionales de centralizar la logica

del sistema en una API para una aplicacion de citas médicas?

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Justificacion:

El acceso oportuno y eficiente a los servicios de salud en Nicaragua continua siendo
un desafio, particularmente en aquellos centros médicos que aun dependen de
métodos manuales para la programacion de citas. Estas limitaciones generan
problemas recurrentes como largas filas, demoras en la atencion, desorganizacion

administrativa y pérdida de informacién clinica relevante.

Considerando este panorama se genera la oportunidad de mejorar con el siguiente
proyecto propone el desarrollo de una aplicacién multiplataforma (web y Android)
que permita gestionar de forma eficiente el proceso de agendamiento de citas
médicas. Esta solucién digital busca mejorar la experiencia del paciente, fortalecer

la operatividad de los centros de salud y reducir la carga de trabajo administrativo.

La implementacion de este sistema permitira automatizar procesos, centralizar la
informacion y brindar notificaciones en tiempo real, contribuyendo a la
modernizacién de los servicios médicos. Ademas, al integrar tecnologias accesibles

y adaptadas al entorno local, se promueve la inclusion digital en el sector salud.

Este proyecto responde no solo a una necesidad tecnoldgica concreta, sino también
al compromiso académico con el desarrollo de soluciones innovadoras orientadas
al bienestar social. Su ejecucion fortalecera las competencias profesionales de los
autores, promovera el uso de tecnologias emergentes y aportard una herramienta

util y escalable para el sistema sanitario nicaraguense.

El proyecto tiene un impacto significativo tanto en la experiencia del paciente como
en la gestidon médica. Para los pacientes, mejora al reducir tiempos de espera,
eliminar filas innecesarias, facilitar la gestion de citas y disminuir el ausentismo
mediante recordatorios automatizados. En cuanto a la gestion médica, optimiza la
organizacion interna con una agenda digital actualizada, reduce la carga
administrativa del personal y mejora la eficiencia en la asignacion de turnos,

evitando conflictos de disponibilidad.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Objetivos:

Objetivo general:

Desarrollar una aplicacion multiplataforma que permita gestionar de manera eficaz

el proceso de agendamiento de citas médicas.

Objetivos especificos:

1.

Disefiar una interfaz de usuario intuitiva y adaptable que permita a pacientes
y personal médico interactuar facilmente con la plataforma, tanto en su
version web como movil.

Implementar un sistema automatizado de notificaciones y recordatorios para
disminuir el ausentismo de pacientes y mejorar la eficiencia del servicio
médico.

Desarrollar una APl RESTful que centralice la l6gica del sistema y permita la

comunicacion eficiente entre la base de datos y las interfaces de usuario.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Marco Teorico:

Arquitectura y Organizacion del Sistema

Este proyecto esta basado en una arquitectura cliente-servidor moderna, donde la
interaccion entre el frontend (aplicaciones web y mévil) y el backend (servidores y
servicios en la nube) se realiza de manera eficiente a través de APIs REST y

servicios de Firebase.

Patrones de Diseino Utilizados

Web — MVC (Modelo-Vista-Controlador):

o Separa claramente la l6gica de negocio, la presentacion y el acceso a
datos.
o Mejora la organizacion del cddigo y facilita el mantenimiento y

escalabilidad.

Movil - MVVM (Modelo-Vista-ViewModel) y separacién de responsabilidades:

o En Flutter se promueve la division de Ul, l6gica de presentacion.
o Se aplican técnicas como Provider o Riverpod para la gestién de

estado.

Flujo General de Informacién

1. Paciente movil:

o Inicia sesion con Firebase Authentication.

o Realiza una cita, que se almacena en Firestore.

o Recibe notificaciones push mediante FCM.

o Puede enviar mensajes al doctor y consultar su expediente médico.
2. Doctor movil:

o Visualiza sus citas mediante Firestore.

o Modifica citas; los cambios se sincronizan en tiempo real.

o Accede y edita expedientes clinicos de sus pacientes.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

3. Director movil:
o Administra doctores, horarios y especialidades desde su app.
o Tiene acceso completo a la base de datos del sistema.
4. Sistema Web (ASP.NET Core):
o Administra todos los datos del sistema (citas, doctores,
especialidades).
o Se conecta con MySQL a través de Entity Framework Core.
o Envia confirmaciones de cita por correo mediante SMTP.
o Expone APIs REST para consultas desde aplicaciones moviles si se

requiere sincronizacion cruzada.

Comunicacion entre Aplicaciones y Servicios

API REST (Web):

La parte web de la aplicacion ya expone endpoints RESTful que permiten
compartir datos estructurados con otros modulos del sistema, facilitando, por
ejemplo, la sincronizacién cruzada de informacion entre diferentes
componentes. Para lograrlo, se utilizo ASP.NET Core, lo que permitio
desarrollar APIls robustas y seguras de manera eficiente. Gracias a esta
tecnologia, se implementaron mecanismos de autenticacion, enrutamiento y
manejo de solicitudes que garantizan un intercambio de datos confiable y
escalable, asegurando una integracién fluida dentro del ecosistema de la

aplicacion.
Firebase Services (Moévil):

o Firestore actua como base de datos en tiempo real para la app movil.
o FCM permite la mensajeria push entre servidor y dispositivos.

o Authentication gestiona el acceso seguro de los usuarios.
Arquitectura General del Sistema

Arquitectura cliente-servidor: Web (ASP.NET Core) + Mdovil (Flutter) + Backend en
la nube (Firebase).

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

La arquitectura cliente-servidor es un modelo ampliamente adoptado en el
desarrollo de sistemas distribuidos, donde los clientes solicitan servicios o recursos,
y un servidor central los procesa y responde. En el presente proyecto, se ha
implementado una arquitectura cliente-servidor hibrida que integra aplicaciones web

y moviles, junto con servicios en la nube para el almacenamiento y gestion de datos.

Componentes de la arquitectura
Cliente Web (ASP.NET Core MVC)

El cliente web esta desarrollado utilizando el framework ASP.NET Core MVC, que
sigue el patron Modelo-Vista-Controlador. Esta capa permite a usuarios con perfil
administrativo (por ejemplo, directores médicos) gestionar el sistema desde una
interfaz accesible via navegador. Las vistas estan construidas con Razor Pages, y
los controladores manejan la l6gica de negocio y las interacciones con la base de

datos mediante Entity Framework Core.
Cliente Movil (Flutter + Dart)

La aplicacion moévil esta construida con Flutter, un framework multiplataforma que
utiliza el lenguaje Dart. Esta aplicacion esta orientada a pacientes y doctores,
permitiendo funcionalidades como agendamiento de citas, consultas de expediente
médico, mensajeria directa y recepcion de notificaciones. Flutter permite una

experiencia de usuario fluida y nativa tanto en Android como en iOS.

10
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Backend en la Nube (Firebase)
Firebase actua como backend en la nube y provee diversos

servicios esenciales para la aplicacion movil:

Firebase Authentication: Manejo de autenticacion de

usuarios mediante correo, Google, entre otros.

Cloud Firestore: Base de datos NoSQL en tiempo real, donde
se almacenan citas, mensajes, historiales y otra informacién

relevante.

Firebase Cloud Messaging (FCM): Servicio de notificaciones
push que permite enviar alertas instantaneas sobre cambios en

citas 0 mensajes nuevos.

]
Flre ase Firebase Storage: Almacenamiento de archivos, util para

resguardar informes meédicos o imagenes relacionadas al

expediente del paciente.

Interaccion entre componentes

La comunicacion entre las aplicaciones cliente (web y moévil) y el backend se realiza
mediante APl RESTful. ASP.NET Core expone servicios web que permiten a la
aplicacién movil acceder o modificar informacion almacenada en la base de datos
MySQL del servidor. Paralelamente, la aplicacion mévil interactua con Firebase para
operaciones que requieren sincronizacion en tiempo real o almacenamiento

temporal.

Este enfoque dual permite aprovechar lo mejor de ambos mundos: una base de
datos relacional robusta (MySQL) para procesos administrativos, y una plataforma
flexible en la nube (Firebase) para mejorar la experiencia del usuario movil,
especialmente en aspectos como tiempo real, notificaciones y accesibilidad desde

cualquier lugar.

11
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Patrones de diseno utilizados (MVC en Web, MVVM y separacion de

Iégica en Flutter)

Los patrones de disefio son esquemas reutilizables de arquitectura que permiten

organizar el codigo de manera eficiente, facilitar el mantenimiento y fomentar la

escalabilidad de las aplicaciones. En este proyecto se han implementado

diferentes patrones de disefo tanto en el desarrollo web como en el desarrollo

movil, adaptados a las caracteristicas especificas de cada entorno tecnoldgico.

Patron MVC en ASP.NET Core Web
El patron Modelo-Vista-Controlador (MVC) es el nucleo del desarrollo de

aplicaciones web con ASP.NET Core. Este patron promueve la separacion de

responsabilidades en tres componentes principales:

Modelo: Representa la l6gica de acceso a datos y las estructuras del
negocio. En este caso, se definen entidades como Cita, Doctor, Especialidad,
entre otras, que se gestionan mediante Entity Framework Core y se persisten

en una base de datos MySQL.

Vista: Define la presentacion de la informacién al usuario. Utiliza Razor
Pages para generar contenido HTML dinamico basado en los datos del

modelo.

Controlador: Actua como intermediario entre el modelo y la vista. Recibe las
solicitudes del usuario, procesa la logica y determina qué vista debe

mostrarse.

Este patron facilita la organizacion del cdédigo, la reutilizacion de
componentes y una interfaz limpia para los usuarios administradores vy

directores del sistema.

Patron MVVM y Separacion de Logica en Flutter

En el desarrollo movil con Flutter se ha adoptado el enfoque del patrén MVVM

(Modelo-Vista-ViewModel) de forma adaptada, combinando buenas practicas de

arquitectura limpia y separacién de responsabilidades para mantener un codigo

modular y mantenible.

12
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

e Modelo: Define las clases de datos, como usuarios, citas o mensajes. Estas

clases son utilizadas por otras capas de la aplicacion.

o Vista: Estda compuesta por los widgets de Flutter, que representan la interfaz
grafica del usuario (Ul). Estas vistas son reactivas y responden a cambios en

el estado del ViewModel.

e ViewModel: Encapsula la légica de presentacién, contiene los controladores
y los estados necesarios para que la vista funcione correctamente. Interactua
con los modelos para obtener o modificar datos y notifica a la vista de los

cambios mediante mecanismos de notificacion como ChangeNotifier.

Ademas del MVVM, se aplica una arquitectura limpia al dividir el cdédigo en

capas como.

e Servicios: Encargados de interactuar con Firebase o con APls externas (por
ejemplo, llamadas HTTP al backend ASP.NET).

o Repositorios: Que abstraen el origen de los datos (pueden provenir de

Firebase, SQLite 0 memoria).

o Controladores o Providers: Que manejan el estado de la aplicacion usando

librerias como provider, riverpod o bloc.

Esta separacion permite testear de forma independiente cada componente, facilita
la extensién de funcionalidades, y promueve un desarrollo basado en principios
SOLID.

Flujo general de informacion entre frontend, backend y base de
datos

El flujo de informacién en una aplicacion cliente-servidor moderna es fundamental
para garantizar la coherencia de los datos, la interaccion fluida del usuario y la
seguridad de los procesos. En este proyecto, el flujo de datos se organiza en funcién
de dos canales principales de interaccion: la plataforma web (ASP.NET Core MVC)
y la aplicacion movil (Flutter), ambas comunicandose con un backend y distintas
bases de datos (MySQL y Firebase).

13
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Flujo en la Plataforma Web (ASP.NET Core MVC)
El flujo de informacion para la plataforma web sigue una arquitectura tradicional

cliente-servidor con persistencia de datos relacional:

Interaccién del Usuario: El usuario accede a través de un navegador y realiza

acciones como crear una cita o registrar un doctor.

Peticion HTTP: Las acciones del usuario son enviadas como solicitudes HTTP
(GET, POST, PUT, DELETE) a los controladores de ASP.NET Core.

Loégica de Controlador: El controlador procesa la peticidn, valida los datos y se

comunica con el modelo correspondiente.

Acceso a Datos: A través de Entity Framework Core, el modelo accede o modifica
la base de datos MySQL utilizando DbContext.

Respuesta: El controlador retorna una vista (HTML dinamico) con los datos

actualizados, que se muestran en el navegador del usuario.

Este flujo es sincrono y centrado en el modelo relacional, ideal para operaciones

administrativas y gestion estructurada de datos.

Flujo en la Aplicacion Mévil (Flutter + Firebase)
El flujo de informacién en la app moévil es mas flexible y orientado a servicios en la

nube y sincronizacion en tiempo real:
Inicio de Sesidn: El usuario inicia sesiéon mediante Firebase Authentication.

Interaccion del Usuario: El paciente o doctor navega por la app, visualiza

informacion, agenda citas.

Servicios y ViewModel: La capa légica en Flutter (ViewModel o provider) interpreta

las acciones del usuario y llama a los servicios correspondientes.

Comunicacion con Firebase:
1. Cloud Firestore: Se consulta, crea o actualiza informacién médica o de citas.

2. Cloud Messaging: Se envian notificaciones push cuando se modifica una cita.

14
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

3. Firebase Storage: Se suben o descargan documentos médicos, si aplica.

Respuesta en Tiempo Real: Firebase responde automaticamente a los cambios
con flujos reactivos, actualizando la interfaz del usuario sin necesidad de recargar

manualmente.

Este flujo permite experiencias reactivas y asincrénicas, ideales para usuarios que

requieren movilidad y notificaciones inmediatas.

Flujo Hibrido: Comunicacion con APl REST

Algunas de las operaciones clave de la aplicacion movil requieren acceso a datos
que residen exclusivamente en el backend del sistema web, como la verificacion de
la disponibilidad de doctores, la gestién de horarios o la sincronizacion de citas
médicas con una base de datos relacional. Para satisfacer estos requerimientos, la
app desarrollada en Flutter establece comunicacién con el backend mediante
peticiones HTTP dirigidas a servicios RESTful implementados en ASP.NET Core.
Cada solicitud enviada desde Flutter es procesada por controladores definidos en
el backend, los cuales interactuan con la base de datos MySQL utilizando Entity
Framework Core como ORM (Object-Relational Mapping). Esta arquitectura permite
que el backend consulte, procese y estructure la informacion necesaria,
devolviéndola en formato JSON para que Flutter pueda interpretarla y presentarla
adecuadamente al usuario final. Este flujo de datos, que combina la interfaz maovil
con un backend robusto y centralizado, permite mantener una l6gica de negocio
coherente y segura, mientras se aprovechan los beneficios de la computacion en la
nube, como la escalabilidad, el acceso en tiempo real y la integracion
multiplataforma. Ademas, este enfoque facilita el mantenimiento y la evolucién del
sistema, ya que la légica critica permanece en el backend, reduciendo la

complejidad en el cliente movil.

15
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Diagrama Resumido del Flujo de Informacion

El diagrama representa el flujo de informacién entre la app web y mévil, donde ambas acceden a

MySQL mediante ASP.NET Core, y la app Flutter también intercambia datos con servicios Firebase.

Comunicacion entre aplicaciones mediante APl REST y servicios Firebase

El presente proyecto contempla un enfoque multiplataforma en el que coexisten una
aplicacién web desarrollada con ASP.NET Core MVC y una aplicacion movil
construida con Flutter. La sincronizacién entre ambas plataformas se logra a través
de dos mecanismos clave: APl RESTful para la interaccién directa con el backend
y servicios de Firebase para funcionalidades en tiempo real, autenticacion y

persistencia en la nube.
Comunicacién mediante APl REST (Web < Movil)

La API REST actua como un puente entre el frontend movil y el backend web,

permitiendo que Flutter consuma servicios expuestos por el servidor ASP.NET Core.

Estructura de la APl REST
Se define en el backend web con controladores especificos ([ApiController]) que
reciben solicitudes HTTP (GET, POST, PUT, DELETE).

16
2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

Las rutas estan organizadas por recursos, por ejemplo:
/api/citas — para gestionar las citas.
/api/doctores — para obtener la lista de doctores disponibles.

/api/especialidades — para consultar especialidades médicas.

Flujo de comunicacion

El usuario en la app movil ejecuta una accion (crear cita, consultar doctores, etc.).
Flutter envia una solicitud HTTP al backend usando http, dio o alguna libreria similar.

ASP.NET Core procesa la solicitud, accede a la base de datos MySQL mediante

Entity Framework Core y responde con un objeto JSON.

Flutter recibe y deserializa la respuesta para presentarla en la interfaz.

Seguridad y Control de Acceso

Para proteger la comunicacion:
Se utiliza autenticacion basada en tokens (JWT o Firebase ID Token).

Se implementan politicas de autorizacion en el backend para restringir el acceso a

usuarios no autorizados.

Comunicacion mediante Servicios Firebase

Firebase proporciona una suite de herramientas que simplifican el desarrollo movil.

En este proyecto, se han implementado los siguientes servicios:

Firebase Authentication efirebase

Permite a los pacientes y doctores autenticarse mediante correo electrénico y

contrasena.
Gestiona sesiones de forma segura y persistente.

Los tokens de sesidon pueden ser reutilizados para autenticacion en peticiones a la
API REST.

Cloud
© Firestore

17
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Cloud Firestore

Base de datos NoSQL en tiempo real para almacenar datos dinamicos como
mensajes, historial de citas y notificaciones. Ofrece sincronizacion automatica entre

multiples dispositivos.

Cloud Messaging (FCM) /gFirebase
Utilizado para el envio de notificaciones push.

Se informa al paciente cuando su cita ha sido modificada, confirmada o cancelada.
También puede notificar al doctor sobre nuevas consultas.

Firebase Storage Firebase

Permite almacenar archivos como resultados de laboratorio o documentos clinicos
asociados al expediente del paciente.

Los archivos pueden ser accedidos desde la app moévil por usuarios autenticados.

Integracion Coordinada

La combinacion de APl REST y Firebase permite una arquitectura hibrida en la

que:

La légica centralizada del sistema (validaciones complejas o integridad de datos)
se maneja desde el backend ASP.NET Core.

La experiencia del usuario movil (como notificaciones, autenticacion y datos en
tiempo real) se gestiona con Firebase para maximizar la velocidad y respuesta
inmediata. Esto permite escalar el sistema facilmente, mantener una experiencia

unificada entre plataformas y reutilizar servicios comunes.

Desarrollo del Médulo Web (ASP.NET Core MVC)

El modulo web del sistema fue construido utilizando ASP.NET Core MVC, un
framework moderno y multiplataforma que permite desarrollar aplicaciones web
robustas, escalables y bien estructuradas mediante el patron arquitectonico
Modelo-Vista-Controlador (MVC). Este enfoque garantiza una clara separacién de
responsabilidades, facilita el mantenimiento del cédigo y permite una escalabilidad

eficiente.

18
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Estructura General del Proyecto

El sistema web se encuentra dividido en multiples areas funcionales, cada una
controlada por su respectivo controlador y modelo. Esta estructura promueve el

modularidad, el desacoplamiento del codigo y la reutilizacion de componentes.

Componentes principales:
e Modelos: Representan las entidades del dominio (Cita, Doctor, Especialidad,

Usuario).
o Vistas: Plantillas Razor que permiten generar interfaces dinamicas.

o Controladores: Gestionan las peticiones HTTP y vinculan los modelos con las

vistas.
Controlador Cita
Responsable de gestionar todo lo relacionado con las citas médicas:

Crear nuevas citas.

o Listar, editar y cancelar citas.

Validaciones de disponibilidad por fecha, hora y especialidad.

Comunicacion con el modelo Cita y su correspondiente vista para mostrar

informacion dinamica.
Controlador Doctor
Administra la informacién del personal médico:
o Alta, modificacién y baja de doctores.
¢ Consulta de informacion detallada: nombre, especialidad, horario laboral.
e Enlace con la vista para mostrar los datos a los usuarios y administradores.
Controlador Especialidad

Permite mantener actualizadas las especialidades médicas que se ofrecen:

19
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

e Gestion CRUD de especialidades.

e Uso de este controlador como filtro previo a la asignacion de un doctor.
o Integracion con el modelo Especialidad y sus vistas asociad
Controlador ConfirmacionCita

Su principal propdsito es la notificacion por correo electronico al paciente cuando

una cita es creada o modificada.
« Integracion con un servidor SMTP para el envio de correos automaticos.

e Generaciéon dinamica del contenido del correo (fecha, hora, doctor,

especialidad).

o Facilita la comunicacion entre el sistema y el paciente.

Conexion a la Base de Datos

Se utilizé Entity Framework Core como ORM para facilitar la interaccién con
MySQL. Todas las operaciones de persistencia se gestionan mediante el contexto
AppDbContext, el cual contiene los DbSet correspondientes a cada entidad del
sistema.

Ventajas del uso de EF Core:

« Permite consultas LINQ para facilitar el manejo de datos.
o Automatiza la creacién de tablas y relaciones mediante migraciones.

e Abstraccion de SQL puro, mejorando la productividad y seguridad del

desarrollador.

Seguridad y Gestion de Accesos

El sistema web contempla distintos niveles de usuario:
o Pacientes: Acceso limitado a creacion y consulta de citas.
o Doctores: Visualizacion y edicion del expediente del paciente.

o Administrador (Director): Acceso completo a la gestion del sistema.

20
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Se implementan mecanismos de autenticacion y autorizacién basados en roles para

restringir el acceso a funcionalidades criticas.

Integracion con Médulo Movil
El médulo web también actua como backend para la aplicacion mdvil, sirviendo
datos mediante una APl REST que expone los controladores necesarios. De esta

manera, los datos se mantienen sincronizados entre la plataforma web y mdvil.

Estructura del Proyecto Web

Organizacion General del Proyecto

El proyecto esta organizado en las siguientes carpetas principales:

« Controllers
Contiene los controladores que manejan las solicitudes HT TP, procesan la lI6gica
de negocio y devuelven respuestas a las vistas o a la API.

e Models
Incluye las clases que representan las entidades del dominio (como Cita, Doctor,
Especialidad, Usuario). Estas clases también definen las relaciones entre las
entidades y son utilizadas por Entity Framework Core para mapear a la base de
datos.

e Views
Carpeta que contiene las plantillas de interfaz de usuario escritas con Razor.
Esta subdividida por controlador, lo que permite mantener organizada la
representacion visual del sistema.

o Data
Contiene la clase AppDbContext, la cual representa el contexto de la base de
datos y se utiliza para interactuar con MySQL a través de Entity Framework Core.

¢ wwwroot
Almacena archivos estaticos como CSS, JavaScript, imagenes y bibliotecas de

frontend utilizadas por la aplicacion.

21
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Migrations

Carpeta que almacena los archivos generados por las migraciones de Entity
Framework Core para la gestion de cambios en el esquema de base de datos.
appsettings. json

Archivo de configuracion donde se especifican parametros del sistema, como

la cadena de conexion a MySQL, configuracion de correo SMTP, entre otros.

Controladores Principales:

CitaController:

Gestiona la creacion, edicién, eliminacion y visualizacidén de citas médicas.
DoctorController:

Administra los datos de los doctores, incluyendo horarios y especialidades.
EspecialidadController:

Permite la gestion de las especialidades médicas registradas en el sistema.
ConfirmacionCitaController:

Encargado de generar y enviar correos electronicos al paciente cuando una cita

es confirmada o modificada.

Modelo de Datos (Entity Framework Core)

Las entidades estan representadas como clases con propiedades que se traducen

directamente a tablas y columnas en MySQL. Por ejemplo:

22
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

public int Id { get; set;

llustracién 1: Define la estructura de una cita médica con sus propiedades clave para el almacenamiento de
datos.

Flujo de Trabajo MVC

1. El usuario realiza una solicitud en el navegador (por ejemplo, crea una cita).
El controlador correspondiente recibe la solicitud y procesa la Iégica de negocio.
El modelo se comunica con la base de datos para recuperar o almacenar
informacion.

4. Los resultados se devuelven a una vista, que se encarga de renderizar la

respuesta HTML y presentarla al usuario.

Modelo-Vista-Controlador (MVC)

El patrén Modelo-Vista-Controlador (MVC) es un enfoque arquitecténico

ampliamente utilizado en el desarrollo de aplicaciones web, y ha sido implementado

23
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

en este proyecto mediante el framework ASP.NET Core MVC. Este patrén

promueve la separacion de responsabilidades, permitiendo una mejor organizacion

del codigo, una mayor mantenibilidad y facilidad para futuras expansiones o

integraciones.

Descripcion del Patron MVC

El patrén MVC divide una aplicacién en tres componentes principales:

Modelo (Model)

Representa los datos y la l6gica. En este proyecto, los modelos son clases que
definen las entidades principales del sistema como Cita, Doctor, Paciente, y
Especialidad. También se conectan con la base de datos mediante Entity
Framework Core.

Vista (View)

Es la parte de la aplicacion encargada de la presentacion visual al usuario. Las
vistas en ASP.NET Core se construyen con Razor, una sintaxis que combina
HTML con C#. Cada vista esta asociada a una accion del controlador y permite

mostrar datos dinamicos que provienen del modelo.

Controlador (Controller)

Maneja las solicitudes del usuario, procesa la lI6gica de la aplicacion y devuelve
una respuesta. Los controladores actuan como intermediarios entre los
modelos y las vistas. Cada controlador en el sistema (como CitaController,
DoctorController, etc.) contiene métodos que responden a acciones

especificas como crear, editar o eliminar datos.

Aplicacion del MVC en el Proyecto

Ejemplo aplicado al flujo de gestion de una cita médica:

24
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Vista: El usuario llena un formulario para agendar una cita.

Controlador: El método Create del CitaController recibe los datos, valida la

informacion y llama al modelo.

Modelo: El objeto Cita es guardado en la base de datos mediante el contexto
AppDbContext.

Controlador: Devuelve una vista de confirmacion.
Vista: Se muestra al usuario una pagina que confirma la creacién exitosa de la cita.

Este flujo garantiza que cada capa tenga una unica responsabilidad, reduciendo la

complejidad del sistema y facilitando la depuraciéon o ampliacién de este.

La implementacion del patron Modelo-Vista-Controlador (MVC) en el médulo web
garantiza una base sodlida para el desarrollo estructurado de funcionalidades. Su
adopcion no solo mejora la claridad del proyecto, sino que también permite un
desarrollo colaborativo mas efectivo y una integracion mas ordenada con otros

modulos como el sistema movil.

Organizacion de Controladores: Cita, Doctor, Especialidad,
Confirmacion

El sistema esta estructurado alrededor de cuatro controladores fundamentales que

se alinean con las entidades principales del dominio médico:
CitaController

La responsabilidad principal del puesto consiste en administrar todos los aspectos
relacionados con la gestion de citas médicas. Entre sus funciones clave se
encuentran la creacion de nuevas citas, la edicion o reprogramacién de citas ya
existentes, la eliminacion de citas cuando sea necesario y la organizacion de las
citas programadas, ya sea por paciente o por fecha, con el fin de mantener un
control ordenado y eficiente del calendario médico.

25
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Relacion con otros componentes:

Ademas, esta funcion hace uso del modelo Cita para gestionar la informacion
relacionada con cada reserva médica. Interactua directamente con los modelos
Doctor y Paciente, lo cual permite validar la disponibilidad de los profesionales de
la salud y asegurar la correcta asignacion de las citas. Asimismo, esta integrada
con las vistas del sistema, tales como Create.cshtml, Edit.cshtml e Index.cshtml,
facilitando la creacion, edicidn y visualizacion de las citas desde la interfaz del

usuario.

DoctorController

La responsabilidad principal de este rol es gestionar la informacién del personal
médico. Entre sus funciones clave se incluyen el registro de nuevos doctores en el
sistema, la edicion de su informacién personal y profesional, como nombre,
especialidad y horario de atencion, asi como la eliminacion de aquellos doctores
que se encuentren inactivos. Ademas, permite visualizar la lista completa de
doctores registrados y acceder a los detalles individuales de cada uno para una
administracion mas eficiente y actualizada del equipo médico.

Relacién con otros componentes:

Este componente utiliza el modelo Doctor como base para gestionar la informacion
del personal médico y se vincula con el modelo Especialidad, permitiendo asignar
una o varias especialidades a cada doctor segun su formacién y experiencia.
Ademas, se conecta con diversas vistas del sistema, como Details.cshtml,
Create.cshtml y Edit.cshtml, lo que facilita la visualizacion de informacion detallada,

asi como la creacion y edicion de registros meédicos desde la interfaz del usuario.
EspecialidadController

La responsabilidad principal de este componente es administrar las especialidades
médicas disponibles en el sistema. Sus funciones clave incluyen la creacion y
registro de nuevas especialidades, la edicion de sus nombres o descripciones para
mantener la informacion actualizada, la eliminacion de aquellas especialidades que

ya no se utilicen, y la visualizacién de todas las especialidades disponibles, lo cual

26
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

facilita su correcta asignacion al personal médico y mejora la organizacion del

sistema de salud.

Relacién con otros componentes:

Este componente mantiene una relacion directa con el modelo Doctor, permitiendo
clasificar a los médicos segun su area médica correspondiente. Gracias a esta
relacion, es posible asignar una o varias especialidades a cada doctor, lo que mejora
la organizacion y busqueda de profesionales segun sus competencias. Ademas, se
apoya en vistas asociadas, como formularios y listados, que facilitan la gestién

visual de las especialidades dentro del sistema.

ConfirmacionCitaController

El ConfirmacionCitaController tiene como responsabilidad principal enviar
confirmaciones automaticas de citas médicas por correo electrénico al paciente.
Entre sus funciones clave se encuentra la generacion de correos electronicos que
incluyen los datos relevantes de la cita, como la fecha, la hora, el doctor asignado y
la especialidad correspondiente. Utiliza la configuracion SMTP para realizar el envio
automatico de estos mensajes, y se encarga de asegurar que las notificaciones
sean enviadas correctamente tanto al momento de crear una cita como cuando esta
es modificada, garantizando asi una comunicacion oportuna y eficiente con el

paciente.

Relacién con otros componentes:

El ConfirmacionCitaController se relaciona directamente con el modelo Cita y sus
asociaciones, de las cuales obtiene la informacion necesaria para generar los
correos de confirmacion, como datos del paciente, doctor, fecha y hora. No cuenta
con vistas propias, ya que actua como un servicio de notificacion en segundo plano,
sin requerir interaccion directa con el usuario a través de la interfaz. Para el envio

de correos, utiliza los servicios SMTP previamente configurados en el archivo

27
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

appsettings.json, lo que permite automatizar la entrega de notificaciones de manera

eficiente y centralizada.

Envio de Notificaciones via Correo con SMTP

Una funcionalidad clave del sistema web desarrollado con ASP.NET Core MVC es
el envio automatico de correos electronicos como mecanismo de notificacion para
los usuarios. Esta capacidad esta implementada en el ConfirmacionCitaController y
tiene como finalidad mantener informado al paciente sobre el estado de sus citas
meédicas. El sistema envia correos electronicos para confirmar la creacion exitosa
de una cita, notificar cambios en la fecha u hora de una cita existente, o informar
sobre cancelaciones u otras modificaciones importantes. Este proceso no solo
asegura una comunicacion efectiva, sino que también mejora la experiencia del
usuario al brindarle mayor confianza mediante recordatorios y confirmaciones
automatizadas.

Tecnologia Utilizada

e Protocolo: SMTP (Simple Mail Transfer Protocol).

e Lenguaje: C# con ASP.NET Core.

o Configuracién: Parametros SMTP definidos en el archivo appsettings. json.

e Libreria: Uso de SmtpClient y MailMessage del espacio de nombres

System.Net.Mail.

Proceso de Envio de Correo

1. Captura de datos: Cuando un usuario agenda una cita, el sistema recopila
informacion como:
o Nombre del paciente.
o Especialidad médica.
o Nombre del doctor.
o Fechay hora de la cita.
2. Envio a través de SMTP:
o Se configura un SmtpClient con servidor, puerto, credenciales y
opciones de seguridad.
o Se ejecuta el método Send () para entregar el mensaje.
3. Resultado:

28
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

o Siel envio es exitoso, se muestra un mensaje de confirmacion.

o En caso de fallo (por ejemplo, error de red o credenciales invalidas),

se captura una excepcion para manejo de errores.

Configuracién Basica en appsettings.json
12 v| "EmailSettings": {

13
14
15
16
17
18

"SmtpServer": "smtp.gmail.com",
"Port": "587",

"Username": "fsmm@4edxmggmail.com”,
"Password": "04022002faS12.",
"FromAddress": "fsmm@4@4xm@gmail.com”

llustracion 2: Muestra la l6gica para enviar correos desde Gmail mediante SMTP, incluyendo servidor, puerto,
usuario y contrasefia.

Caédigo Simplificado de Ejemplo

proyectot > Controllers > € EmailService.cs > %2 EmailService
1 // Services/EmailService.cs
2 using System.MNet;
3 using System.MNet.Mail;
4 using - .
5 using Microsoft.Extensions.Options;
& sing H
7
8 public class EmailService
9 1
1@ private readonly EmailSettings _emailSettings;
11
Tabnine | Edit | Test | Explain | Document | O referencias
12z public EmailService(IOptions<EmailSettings> emailSettings)
13 {
14 _emailSettings = emailSettings.Value;
15 }
16
Tabnine | Edit | Test | Explain | Document | O referencias
17 public async Task EnviarCorreoConfirmacionAsync{string emailDestinc, string asunto, string mensaje)
18 1
19 wvar mail = new MailMessage(_ emailSettings.Fromidddress, emailDestino, asunto, mensaje)
20
21 IsBodyHtml = true
22 }s
23
24 using var smtp = new SmtpClient(_emailSettings.SmtpServer, _emailSettings.Port)
25
26 Credentials = new NetworkCredential{_emailSettings.Usernams, _emailSettings.Password),
27 EnableSsl = true
28 ¥;
29
3@ await smtp.SendMailAsync(mail);
31 ¥
32 3
33

llustracion 3: Muestra la légica del controlador EmailService

29
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Persistencia de Datos en la Web

La persistencia de datos es uno de los pilares fundamentales de cualquier aplicacion
web. En este proyecto, se ha implementado utilizando Entity Framework Core
como ORM (Object-Relational Mapping), en combinacion con MySQL como sistema
gestor de bases de datos. Esta integracion permite almacenar, consultar, modificar

y eliminar datos de manera eficiente, segura y mantenible.

¢Qué es Entity Framework Core? A S P N ET

Entity Framework Core (EF Core) es un framework de acceso

a datos desarrollado por Microsoft que permite a los
desarrolladores interactuar con bases de datos relacionales '
mediante objetos C#, evitando la escritura directa de SQL. EF

Core traduce las operaciones del lenguaje C# a comandos

SQL que ejecuta sobre la base de datos.
Configuracion de EF Core con MySQL

La conexion entre la aplicacion ASP.NET Core y MySQL se configura desde el

archivo appsettings. json y el DbContext de la aplicacion.

Ejemplo de configuracion:

appsettings. json

"ConnectionStrings™: {
"DefaultConnection™: "server=localhost;database=ClinicaDB;user=root;password=tu_contrasefia”

llustracion 4: Muestra la logica del appsettings.jsom para conectar con la base de datos.

Startup.cs (o Program.cs en versiones recientes)

30
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddDbContext<AppDbContext>(options =»
options.UseMySql(

builder.Configuration.GetConnectionString("DefaultConnection™),

ServerVersion.AutoDetect(builder.Configuration.GetConnectionString("DefaultConnection™))
E

var app = builder.Build();

llustracion 5: Muestra ejemplo de I6gica en program.cs para el AppDbContext

Clase AppDbContext

Es el puente entre los modelos del sistema y la base de datos. Define los DbSet

para cada entidad.

using Microsoft.EntityFrameworkCore;

public class AppDbContext : DbContext

{
public AppDbContext(DbContextOptions<AppDbContext> options)
: base(options) { }
public DbSet<Cita> Citas { get; set; }
public DbSet<Doctor» Doctores { get; set; }
public DbSet<Especialidad> Especialidades { get; set; }
¥

llustracion 6: Muestra ejemplo de I6gica del AppDbContext para conexion entre modelos.

Ciclo de Vida de una Operacion CRUD con EF Core

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Métodos/Funciones

Fase Descripcion
P Comunes
1. Creacién del EF Core necesita un DbContext para new
; acceder a la base de datos. Se ApplicationDbContext(
Contexto : e
configura la conexion y los DbSet.)
context.Entity.Find(i
2. Consulta Se recuperan datos desde la pase de d)context.Entity.ToLi
(Read) datos. Puede ser por ID, por filtros o t t g
con relaciones. st()context.Entity.In
clude(...)
3. Creacién Se crea una nuevalentldad yseagrega | -sntext.Add (entity)co
al contexto, pero aun no se guarda en
(Create) ntext.SaveChanges()

la base de datos.

4. Actualizacion
(Update)

Se modifica una entidad existente.
Primero se recupera, luego se alteran
sus propiedades y finalmente se
guarda.

context.Update(entity
)context.SaveChanges(

)

5. Eliminacion
(Delete)

Se elimina una entidad del contexto y
luego se guarda el cambio en la base
de datos.

context.Remove(entity
)context.SaveChanges(

)

6. Seguimiento

EF Core realiza seguimiento (tracking)
de los cambios en las entidades. Esto

Automatico con el
ChangeTracker del

(Tracking) permite detectar qué propiedades se
han modificado. DbContext
Todos los cambios en el contexto
7. Guardado (agregados, modificados, eliminados)
(Save) se confirman en la base de datos con context.SaveChanges()

SaveChanges().

Migraciones

TABLA 1: CICLO DE VIDA DE UNa 0Peracion CRUD CON €F Core

Las migraciones permiten crear o actualizar la estructura de la base de datos desde

el codigo fuente.

dotnet ef migrations add InitialCreate
dotnet ef database update

Uso de Entity Framework Core

Entity Framework Core (EF Core) es el ORM (Object-Relational Mapper) utilizado
en este proyecto para facilitar el acceso a la base de datos MySQL desde la

aplicacion ASP.NET Core MVC. Esta herramienta permite trabajar con datos

32
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

relacionales utilizando objetos C# fuertemente tipados, reduciendo

significativamente la necesidad de escribir consultas SQL manuales.

¢Qué es EF Core?

EF Core es una version moderna, ligera, multiplataforma y de alto rendimiento de
Entity Framework, disefiada para aplicaciones .NET Core. Su propdsito es mapear
automaticamente clases .NET a tablas de una base de datos, permitiendo asi
desarrollar aplicaciones basadas en datos de forma mas productiva y segura.

Componentes Clave de EF Core en el Proyecto
a) Entidades (Modelos)

Son clases C# que representan las tablas de la base de datos.

Ejemplo:

public class Paciente

{
public int Id { get; set; }
public string MNombre { get; set; }
public string Correc { get; set; }
public DateTime FechaMacimiento { get; set; }
public ICollection<Cita> Citas { get; set; }
}

llustracion 7: Muestra ejemplo de la I6gica de un modelo paciente.

b) DbContext

El DbContext es el puente principal entre tus clases (entidades) y la base

de datos. Es responsable de:

e Realizar consultas a la base de datos

33
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

e Guardar cambios

e Configurar las relaciones entre las entidades

Ejemplo:

using Microsoft.EntityFrameworkCore;

public class ClinicaContext : DbContext

{
public ClinicaContext(DbContextOptions<ClinicaContext> options) : base(options) { }
public DbSet<Paciente» Pacientes { get; set; }
public DbSet<Cita» Citas { get; set; }

public DbSet<Doctor> Doctores { get; set; }

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

base.0OnModelCreating (modelBuilder);

llustracion 8: Muestra ejemplo de légica del cédigo AppDbContext
c) Configuracion del Contexto

Para que EF Core sepa cdmo conectarse a tu base de datos MySQL, debes

configurar el DbContext en Program.cs.

var builder = WebfApplication.CreateBuilder(args);

builder.Services.AddDbContext<ClinicaContext>(options =»
options.UseMySql(builder.Configuration.GetConnectionString(”DefaultConnection™),
new MySglServerVersion(new Version(3, @, 23))

1)

var app = builder.Build();
llustracion 9: muestra légica de configuracion en Program.cs
Migraciones

EF Core permite aplicar cambios en el esquema de la base de datos a través de

comandos de migracion.

34
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

dotnet ef migrations add InitialCreate
dotnet ef database update

Esto crea automaticamente las tablas y relaciones segun los modelos definidos.

Consultas con LINQ

Ejemplo de consulta para obtener citas filtradas por especialidad:

var citas = context.Citas
.Where(c =»> c.Especialidad == "Pediatria")
.Include({c => c.Doctor)

.TolList();

llustracion 10: Muestra como hacer una consulta con cédigo SQL.

Operaciones CRUD Basicas

Crear:

context.Citas.Add(nuevaCita);

var nuevaCita = new Cita

{
Fecha = DateTime.Now.AddDays{1),
Especialidad = "Pediatria”,
DoctorId = 1,

1

context.Citas.Add({nuevaCita);

context.SaveChanges();

llustracién 11: Muestra ejemplo de légica basica de operacion CRUD créate.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

35

var cita = context.Citas.Find(id);
Leer:

var cita = context.Citas.Find(5);
if (cita != null)
{

Console. Writeline($"Cita con el doctor {cita.DoctorId} en {cita.Fechal}");

llustracion 12: Muestra ejemplo de l6gica basica de operacion CRUD Leer.

Actualizar:

cita.Fecha = nuevaFecha;

context.SaveChanges():
var cita = context.Citas.Find(5);

if (cita != null)

{
cita.Fecha = DateTime.MNow.AddDays(3);

context.SaveChanges()};

llustracion 13: Muestra ejemplo de légica basica de operacion CRUD actualizar.

Eliminar:
context.Citas.Remove(cita);

context.SaveChanges();
var cita = context.Citas.Find(5);

if (cita != null)
{

context.Citas.Remove(cita);

context.SaveChanges();
llustraciéon 14: Muestra ejemplo de légica basica de operacion CRUD Eliminar.

36
2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

MySQL como motor de base de datos.

En este proyecto, se ha optado por utilizar MySQL como el sistema de gestion
de base de datos (DBMS) principal para el médulo web desarrollado con
ASP.NET Core MVC. MySQL es una base de datos relacional de

cédigo abierto ampliamente utilizada en aplicaciones web por su

rendimiento, estabilidad y compatibilidad con diversos entornos de g

desarrollo.

Caracteristicas de MySQL

MySQL es un sistema de gestién de bases de datos relacional que destaca por ser
de cdédigo abierto y compatible con multiples sistemas operativos como Windows,
Linux y macOS, lo que facilita su implementacion en distintos entornos. Esta
disenado para ofrecer un alto rendimiento, capaz de manejar grandes volumenes
de datos y procesar multiples transacciones simultdaneamente sin afectar su
velocidad ni estabilidad. Gracias a su escalabilidad, MySQL se adapta tanto a
proyectos pequenos como a sistemas empresariales complejos, permitiendo crecer
sin necesidad de cambiar de plataforma. Ademas, cuenta con soporte para
integridad referencial mediante el uso de claves foraneas, lo que garantiza que las
relaciones entre tablas sean consistentes y que los datos sean confiables.
Finalmente, MySQL utiliza el lenguaje SQL, un estdndar ampliamente reconocido
para la gestion y consulta de bases de datos, lo que facilita su aprendizaje y uso en
diversas aplicaciones.

Justificacion del uso de MySQL

Se eligié MySQL por las siguientes razones:

e Su integracion nativa y estable con Entity Framework Core, el ORM
utilizado en ASP.NET Core.

e Su compatibilidad con herramientas de desarrollo populares como
MySQL Workbench.

o El soporte a largo plazo de la comunidad y de empresas como Oracle.

« Su rendimiento eficiente en operaciones CRUD (crear, leer, actualizar y

eliminar), que es clave para el funcionamiento del sistema de citas médicas.

37
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Diseno de la base de datos

La estructura de la base de datos incluye varias entidades clave relacionadas entre

Si:

« Cita: contiene la informacién sobre cada cita médica.

e Doctor: almacena los datos personales y profesionales de los médicos.
o Especialidad: define las areas médicas disponibles en el sistema.

o Paciente: mantiene los registros de los usuarios/pacientes del sistema.

o Usuario: incluye credenciales de autenticacion y datos basicos.
Relaciones principales:

e Un Doctor puede tener muchas Citas.
« Una Especialidad puede estar asignada a muchos Doctores.

« Un Paciente puede tener multiples Citas.

Integracion con ASP.NET Core MVC

La conexion entre MySQL vy la aplicacion web se realiza mediante Entity
Framework Core, que traduce las operaciones sobre objetos C# en N
comandos SQL que MySQL ejecuta.

ASPNET (e MVC
La cadena de conexion se define en el archivo appsettings.json:
"ConnectionStrings™: {
"DefaultConnection™: “serwver=localhost;database=ClinicalB;user=root;password=0404;"

1
I
"AllowedHosts™: "*",

llustracion 15: Muestra logica de cAdigo para la conexion de la base de datos.

Configuracion del contexto AppDbContext
En una aplicacién ASP.NET Core que utiliza Entity Framework Core como ORM, el

contexto de base de datos es el componente fundamental que actia como un

38
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

puente entre el modelo de datos (clases C#) y la base de datos relacional (en este

caso, MySQL). En este proyecto, el contexto se define en la clase AppDbContext.

El AppDbContext:

Administra las conexiones a la base de datos.

Realiza el mapeo entre las clases del modelo y las tablas de la base de datos.

Permite consultar, insertar, actualizar y eliminar datos utilizando LINQ.

Gestiona las relaciones entre entidades, validaciones y configuraciones adicionales.

Estructura de la clase AppDbContext

-

9

18

namespace (linica.Models

public class AppDbContext : DbContext

public AppDbContext(DbContextOptions<AppDbContexts options) : base(options) { }

public DoSet<Especialidad> Especialidades { get; set; }

public DoSet<Turno» Turnos | get; sst; }

public DoSet<Doctors Doctores { get; set; }

public DboSet<(itay (itas { get; set; |

protected override void OnModelCreating(ModelBuilder modelBuilder)
I
L
// Doctor - Especialidad (muchos doctores tienen una especialidad)
modelBuilder.Entity<Doctor>()
.HasOne(d => d.Especialidad)
.WithMany(e => e.Doctores)
.HasForeignKey(d =»> d.EspecialidadId)
.OnDelete(DeleteBehavior.Restrict); // Cambiar a Restrict o SetNull

modelBuilder.Entity<Doctor>()
.HasOne(d => d.Turno)
.WithMany(e => e.Doctores)
.HasForeignKey(d =» d.Turnold)
.OnDelete(DeleteBehavior.Restrict); // Cambiar a Restrict o SetNull

// Cita - Especialidad (una cita tiene una especialidad)
modelBuilder.Entity<Citax()

.HasOne(c => c.Especialidad)

JWithMany(e => e.Citas)

.HasForeignKey(c =» c.EspecialidadId)

.OnDelete(DeleteBehavior.Restrict);
1

llustracion 16: Muestra logica de codigo completo AppDbContext.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

39

Relaciones entre entidades

Las relaciones estan definidas usando navegacion entre objetos y llaves

foraneas. Algunas relaciones clave son:

Uno a muchos entre Doctor y Cita:
o Un doctor puede tener muchas citas.
o Cada cita pertenece a un solo doctor.
Uno a muchos entre Paciente y Cita:
o Un paciente puede tener varias citas.
o Cada cita pertenece a un paciente.
Uno a muchos entre Especialidad y Doctor:
o Una especialidad médica puede ser compartida por varios doctores.

o Cada doctor tiene una especialidad.

Estas relaciones se configuran explicitamente en el método OnModelCreating ()
dentro de AppDbContext:

modelBuilder.Entity<Doctors()
.HasOne(d =» d.Turno)
WithMany(e =»> e.Doctores)
.HasForeignKey(d =»> d.Turnold)
.OnDelete(DeleteBehavior.Restrict); // Cambiar a Restrict o Sethull

// Cita - Especialidad (una cita tiene una especialidad)
modelBuilder . Entity<Cita>()
.HasOne(c =» c.Especialidad)
JWithMany (e =» e.Citas)
.HasForeignkKey(c =» c.EspecialidadId)
.OnDelete(DeleteBehavior.Restrict);

llustracion 17: Muestra pastes de la I6gica del AppDbContext

Ejecucion del flujo de migraciones

Para aplicar todos los cambios al crear o actualizar la base de datos:

40
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

1. Agregar una migracion:

dotnet ef migrations add NombreMigracion
2. Aplicar migraciones:

dotnet ef database update

3. Verificar que las tablas y relaciones se reflejan correctamente en el motor
MySAQL.

v medicapp

v B9 Tables
= citas
doctores
especialidades
horarios_cita
pacientes
roles
turnos
usuarios

Y VY VY VY V¥

llustracion 18: Muestra las tablas de la base de datos.

Seguridad Web

La seguridad es un aspecto esencial en el desarrollo de aplicaciones web,
especialmente cuando se trata de un sistema que maneja informacién confidencial
como datos médicos de pacientes, citas clinicas y accesos diferenciados por roles
(paciente, doctor y director). En este proyecto, se han implementado diversas
medidas de seguridad a nivel de autenticacion, autorizacion, protecciéon contra

ataques y cifrado de datos. Autenticaciéon de usuarios

ASP.NET Core proporciona un sistema de autenticacion robusto mediante cookies,
tokens JWT o Identity. En este sistema, se ha optado por ASP.NET Core Identity,

que permite:

41
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

¢ Registro y login de usuarios.

o Gestion de contrasenas seguras mediante hashing (por defecto, utiliza el
algoritmo PBKDF2).

« Almacenamiento de roles y claims.

» Validacion automatica de credenciales.

Ejemplo de configuracion en Program.cs:
builder.Services.AddIdentity<IdentityUser, IdentityRolex>()
LAddEntityFrameworkStores<AppDblontext>();

llustracion 19: Muestra la logica para trabajar los roles.

Autorizacién por roles

La autorizacion garantiza que solo los usuarios autorizados accedan a ciertas

funcionalidades. En este sistema, los roles definidos son:

o Paciente: acceso a gestidn de sus citas y expediente.

o Doctor: acceso a su agenda y expedientes de sus pacientes.

e Director: acceso completo para administrar usuarios, doctores y especialidades.

using Microsoft.AspMNetCore.Authorization;

using Microsoft.AspMetCore.Mwvc;

[avthorize{Roles
public class Controlle
i
public TActionResult WerExpediente(int id)
i€
wvar expediente = ObtenerExpedientePorId(id):
if (expediente == null)

return MNotFowund{):

return View(expediente):

return new { Id = id, MNombre = "Paciente Ejemplo™ };

llustracién 20: Muestra controlador ASP.NET Core que permite a usuarios con rol "Doctor" ver expedientes

simulados por ID.

Proteccion contra ataques comunes

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

42

ASP.NET Core incorpora proteccién integrada contra los ataques web mas

frecuentes:

ASP.NET Core incorpora varias medidas de seguridad para proteger las
aplicaciones web contra los ataques mas comunes. Para prevenir CSRF (Cross-
Site Request Forgery), utiliza tokens antifalsificacion que se generan
automaticamente y se insertan en los formularios mediante la directiva
@Html.AntiForgeryToken(), garantizando que las solicitudes provengan de usuarios
legitimos y no de fuentes externas maliciosas. En cuanto a la proteccion contra XSS
(Cross-Site Scripting), el motor de vistas Razor codifica automaticamente el
contenido HTML generado dinamicamente, evitando que scripts maliciosos se
inyecten y ejecuten en el navegador del usuario. Finalmente, para evitar SQL
Injection, ASP.NET Core recomienda el uso de Entity Framework Core, que
parametriza todas las consultas a la base de datos, lo que elimina la posibilidad de
que un atacante inserte codigo SQL dafiino a través de entradas maliciosas. Estas
protecciones integradas facilitan el desarrollo seguro y robusto de aplicaciones web
en ASP.NET Core.

Cifrado y almacenamiento seguro

« Las contraseias de los usuarios se almacenan cifradas y nunca en texto plano.
« Los tokens de autenticacidn se transmiten de forma segura mediante HTTPS.
e Se recomienda implementar politicas de complejidad de contrasefia y expiracion

de sesiones.

HTTPS y certificados SSL

Para proteger la comunicacion entre el navegador y el servidor, se ha habilitado el

uso obligatorio de HTTPS en la aplicacion:

app.UseHttpsRedirection();

llustracion 21: Muestra app.UseHttpsRedirection();que redirige las solicitudes HTTP a HTTPS para proteger la
comunicacion.

43
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Ejemplo en Dart (Flutter):

Ademas, al implementar el proyecto en un servidor real (por ejemplo, Azure, AWS

o un VPS), se debe asegurar la instalacién de un certificado SSL valido

Autenticacion y Autorizacion en la Aplicacion Moévil (Flutter +
Firebase)

La autenticacion y autorizacion son componentes criticos en la arquitectura del
sistema movil, ya que permiten identificar a los usuarios, asignar roles y restringir
el acceso a funcionalidades segun el tipo de usuario (paciente, doctor o director).
Para este proyecto, se utiliza Firebase Authentication como proveedor de
autenticacion centralizado, lo que simplifica la implementacion y garantiza un alto

nivel de seguridad.

Autenticacion con Firebase

Firebase Authentication permite autenticar a los usuarios mediante multiples

meétodos. En esta aplicacion se utiliza principalmente:

Correo electrénico y contraseina: El usuario se registra y luego inicia sesién
mediante sus credenciales.
Autenticacion persistente: El estado de sesién se mantiene incluso si la app se

reinicia, hasta que el usuario cierre sesion explicitamente.

llustracion 22: muestra la logica de validacion de roles al iniciar sesion.
Firebase también maneja automaticamente:

44
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Recuperacion de contrasefas.
Verificacion de correo electrénico.

Control de sesion.
Autorizacion basada en roles

Después de que un usuario se autentica en el sistema, es fundamental
determinar su tipo o rol especifico (como paciente, doctor o director) para
otorgarle los permisos y accesos adecuados dentro de la aplicacion. Para lograr
esto, el rol de cada usuario se almacena previamente en una base de datos, ya
sea en Firebase Firestore o en Firebase Realtime Database. Cuando el usuario
inicia sesion, el sistema consulta esta informacion para identificar su rol exacto.
Con base en el rol recuperado, el usuario es redirigido automaticamente a la
interfaz o panel de control que corresponde a su perfil, asegurando asi que solo
pueda acceder a las funcionalidades y recursos que le estan permitidos. Este
mecanismo de autorizacién basada en roles garantiza un control de acceso
organizado, seguro y personalizado, mejorando la experiencia del usuario y la

gestion interna de la aplicacion.

Ejemplo de consulta de rol:

rro g
"No se encontrd el rol del wsuario en la base de datos”,

if (roleFirestore 1= selectedRole) {

context, "fi{selectedRole}_dashboard");

} el Al = 'wrong-password’) {
errorMsg = "Contrasefia incorrecta™;

45
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Futurecvoid> handleLog
if (selectedRole == r
_showErrorDialog(™S

ecciona un rol antes de continuar”);

1

final email = emailComtroller.text.trim();
final password = passwordComtroller.text.trim();

if (email.isEmpty || password.isEmpty) {

_showErrorDialog("Por favor, ingresa todos los campos™);

iciar sesidn con Firebase Auth

efuth.instance. signInkithEmailandPassword(
email: email,
password: password,

llustracion 23: muestra la logica de autorizacion de rol basada en firebase

Casos de uso: Segun el valor de rol, se navega a la vista especifica para:

o Paciente: ver y agendar citas, acceder a su expediente.

Accede al sistema

| e ——...
muestras opciones ver, agendar cita y acceder a su expediente -

v

ﬁ

selecciona la opcion de preferencia

- muestra los datos de la opcion seleccionada

Paciente < Sistema

o Doctor: revisar agenda, gestionar citas, ver y editar expedientes.

DOCTOR

Accede al sistema >

\ selecciona la opcion de preferencia »

muestra los datos de la opcion seleccionada
<)
Doctor = Sistema

o ——_
Njuetsra las opciones de revisar agendas. gestionar citas. ver v edifar expediente

o Director: administrar doctores, horarios, especialidades, y acceder a la vista

de administracion.

46
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Director

¥

(

r Accede al sistema

Muestra todas las opciones disponibles ya sea de
paciente o0 medico y permisos peciaes

selecciona la opcion de preferencia

muestra los datos de la opcion seleccionada
. < :
Director = Sistema

Seguridad adicional con Firebase Rules

Para evitar accesos no autorizados desde el frontend, se configuran Firebase
Security Rules, las cuales restringen el acceso a colecciones o documentos segun

el rol y la autenticacion del usuario.

Ejemplo basico:

{ Iniciar sesidn con Firebase Auth

gwait Firebasefuth.instance.signinkWithEmailandPassword(
email: email,
password: password,

Ji

f/ Obtener rol desde Firestore y verificar gue coincida con el seleccionado
final rolefirestore = await obtenerfolDelUsuariod);
if (roleFirestore == null) {

_showErrorbialog(

"Mz se encontrd el rol del wswario en la base de datos”,
HH
return;

if (roleFirestore = selectedRole) {
_showErrorbialog(
"El rol seleccionado no coincide con el rol asignado al wsuario®,
L
return;

{ Guardar email y rol en preferencias
awailt _savelserCredentials();
f/ Navegar al dashboard segun rol
Navigator.pushReplacementNamed(context, "J%i{selectediole}_dashboard’);
} on FirebaseAuthException catch (e} {
String errorMsg = "Error al iniciar sesion”;
if (e.code == "user-not-found") {
errorMsg = "Usuario no registrado”™;
} else if (e.code == 'wrong-password’) {
errorMsg = "Contrasefa incorrecta™;
_showtrrorDialog{errorMsg);

}

llustracion 24: muestra la l6gica para evitar el acceso usuarios no autorizados

47
2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

Manejo de sesiones y cierre de sesion

o Firebase mantiene automaticamente la sesidn activa del usuario.
e Se proporciona un botdn de "Cerrar sesion" en la interfaz, que ejecuta

14 - - — e - -
_MrectorbashoocardButto

title: "Salir del Perfil’,
icon: lcons.logout,
onTap: () =» _signOut(context},

llustraciéon 25: muestra la funcién para cerrar el perfil del usuario

Control de Acceso Basado en Roles (Paciente, Doctor, Director)

En un sistema meédico digital donde interactuan multiples tipos de usuarios, es
fundamental implementar un mecanismo de control de acceso robusto basado en
roles. Este mecanismo asegura que cada usuario pueda acceder unicamente a las
funcionalidades que le corresponden segun su perfil, protegiendo asi la

confidencialidad de los datos y la integridad de las operaciones.

Control de Acceso en la Aplicacion Web (ASP.NET Core MVC)

Gestidn de Roles con Identity

ASP.NET Core ldentity permite crear y asignar roles facilmente a los usuarios
autenticados. En este sistema, los roles se definen al momento del registro o

mediante herramientas de administracion disponibles para el director.

48
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

public aswync Task<lactionResult: Register{RegisterviswModel model)

if {IModelState.Iswalid)

return Wiew{model) ;
war user = new ILdentitylUser { Userfamse = model.Email, Email = model .Email };
= result = await _userManager.CreatefAsync{user, model.Password]);

if (result.Succeeded)

i
/4 Crear rol si mo existe
if (lawait _roleManager.RoleExistsasyncimodel ..Rolel)
await _roleManager.Createfssync{new IdentityRole({model.Role});
}
£foAsignar rol
await _userManager.addToRolefAsync (user, model.Role);
S¥ Indiciar sesign
await _signInManager.signinfsyncluser, isPersistent: false);
Redirigir al dashboard correspondiente
return RedirectToaction{ "Dashboard™, model.Role);
foreach (wvar error in result.Errors)

ModelState.AddModelError(”™™, error.Description);

return View(model);

llustracion 26: muestra la logica de creacion y asignacion de roles especificos

Autorizaciéon por Roles

Las vistas y controladores estan protegidos con el atributo [Authorize], el cual

restringe el acceso segun el rol del usuario.

Ejemplo:

public class DirectorController : Controller
[Authorizre(Roles = "Director™)]
public TActionResult GestionarDoctoresq)
i
reTurn Wiewd b
b
public class DoctorController @ Controller
[Aurchorize(Roles = “Doctor
sublic IActionfAesult Weragendal
i
etTu W e
b
public class PacienteController : Controller
[Aurthorize(Roles = “Paciente™]]
public IActionResult wWercitas()
i
reTurn Wiewd b
T

[authorizea]
llustracion 27: muestra la logica de autorizacion de roles

Interfaz Personalizada por Rol

Cada usuario ve una interfaz diferente segun su rol. Esto se controla mediante

condiciones en las vistas Razor:

49
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

f {User.Identity.IsAuthenticated)

-~

® Mostrar enlaces segin rol *@

@if (User.IsInfole("Paciente"))

{

«li»<a asp-controller="Homa"

f (User.IsInfole("Doctor™))

<li»<a asp-controller="Home"

f (User.IsInfole("Director”))

«li»<a asp-controller="Homa"

¢liz«form asp-controller="Account™ asp-action="Logout" method="post"

asp-action="Agendar{ita”»Agendar Cita</ax/1ix

asp-action="VerAgenda">Ver Agenda</a»</lix

asp-action="GestionarDoctores” :Gestionar Doctores<faz</1is

id="logoutForm" >

<button type="submit"»Cerrar sesidn</button:

</Form> fFlogout <f1ix
else
r
i
<li»<a asp-controller="Account”
¢<liz<a asp-controller="Account™
1

asp-action="Login">Iniciar sesion</as</lix
asp-action="Register":Registrarsed/fase/1ix

llustracion 28: muestra la implementaciéon de menu, segun la asignacion de roles

Control de Acceso en la Aplicacion Mavil (Flutter + Firebase) Almacenamiento de

Roles en Firestore.

Después del registro, a cada usuario se le asigna un rol en una coleccion de

usuarios:

“uid

i

“uid

=

“uid

I

“uid

_paula_molina™:

_jorge ramirez":

_mario_perez":

{

"Paula Molina™,
“doctor”

"nombre":
“rol™:

{l
"Jorge Ramirez",
“doctor"”

"nombre":
“rol™:

{
"nombre”™: "Mario Pérez",

“rol”: "paciente"™

_luis_gomez™: {

“nombre”: "Luis Gomez",

"rol"”: "paciente"

llustracion 29: muestra el registro de los usuarios registrados

Restriccion de Funcionalidades en Flutter.

Aliniciar sesion, la app consulta el rol del usuario y lo redirige a la interfaz adecuada:

50

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

buildLoginForn() {
d(

elevation: 8,

shape: RoundedRectangleBorder(borderRadius: BorderRadius.circular(16)),
elnsets.symmetric{horizantal: 24),

const Edgelnset
child: Column(

al1(24.9),

mainAxisSize: MainAxissize.min,
children: [
Text(
"Iniciar sesién como ${select
style: const TextStyle(J

1[@].touppercase () }4{selactedRolel . substring(1)}"
pp) E(12}",

" ext
const SizedBox(height: 28),
TextField(// TextField -
const SizedBox(height: 16),

(height: 18),
utton(// ElevatedButton
TextButton(
onPressed:
() = se
selectedols
enailControl] ;
passwerdConts r()

rememberisar

child: const Text('Cambiar rol'),

% exth

Text8utton(
onPressed: () [

Navigator.pushNamed(context, '/register_i[selectedhole 2* ""}");

child: const Text{’(No tienes cuenta? Crea una aqui'),
) extButton

llustracion 30: muestra la logica para consultar datos y redireccionamiento de perfil al usuario asignado.

Proteccion con Reglas de Seguridad en Firebase

Se aplican reglas que restringen el acceso a los datos desde el backend:

service cloud. firestore {
metch /databasess{

ase}/documents {

match fus
allow r

arios/{userld} {

, write: if request.auth !'= null && request.auth.uid == userld;
'r
match /citas/{citeld} {

ellow r , write: if request_auth != null &&
get(/dateba

sesf/5{detabase)/documents/usuarios/§(request.auth.wid)) .data.rol in |

llustracion 31: muestra la implementacién de reglas de acceso

2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

1l | doctor , director’, paciente'|;

51

Resumen de Permisos por Rol

Funcionalidad Paciente S Director
|Agendar y cancelar citas
Ver expediente propio
Ver y modificar expedientes|| ©
Gestionar citas)
|Administrar doctores N N
Asignar especialidades N O
Configurar horarios Q
Acceso completo N N

TaBLa 2: PETMISOS POF ROL

Desarrollo del Médulo Mévil
(Flutter)

El médulo mévil fue desarrollado utilizando
Flutter, un framework multiplataforma de
cédigo abierto creado por Google, que
permite compilar una unica base de codigo
en aplicaciones nativas para Android e
iOS. En este proyecto, la aplicacion movil
esta orientada principalmente a pacientes,
doctores y el director médico, cada uno con

permisos especificos segun su rol.

-lutter

52

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Arquitectura y Patron MVVM

Se utilizé el patron MVVM (Model-View-ViewModel) para separar la légica de
negocios de la interfaz de usuario, facilitando asi el mantenimiento del cdodigo, la

escalabilidad y la reutilizacién de componentes:

e Model: Define la estructura de los datos (como citas, usuarios, expediente).

o View: Interfaz gréafica que el usuario ve e interactua.

« ViewModel: Gestiona la logica de negocios y se comunica con Firebase y
SQLite.

Funcionalidades Implementadas

Rol Paciente

e Registro y autenticacion via Firebase.

o Agendar, modificar y cancelar citas médicas.

« Ver historial de citas y expediente clinico resumido.
o Chat con el doctor asignado.

e Recibir notificaciones cuando el doctor modifica una cita.
Rol Doctor

« Ver agenda diaria de citas.
« Consultar y modificar el expediente completo de sus pacientes.
o Cambiar fecha y hora de una cita si es necesario.

o Comunicarse con pacientes a través del sistema de mensajeria.
Rol Director

o Gestionar el alta, edicion y eliminacion de doctores.
o Asignar especialidades y horarios de trabajo.

e Supervisar toda la plataforma desde el maévil (funcionalidad administrativa).

53
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Flujo de Datos
Local y en la Nube

En la aplicacion, Firebase se utiliza como la principal plataforma para almacenar y
sincronizar la mayoria de los datos en la nube, asegurando que la informacion
esté siempre actualizada y accesible desde cualquier dispositivo. Para mejorar la
experiencia del usuario y permitir el funcionamiento incluso sin conexion a internet,
se emplea Sqflite para almacenar datos en caché localmente en el dispositivo.
Esto posibilita que ciertas funcionalidades sigan operando de manera offline. Una
vez que el dispositivo recupera la conexion, todos los cambios realizados
localmente se sincronizan automaticamente con Firestore, manteniendo la

coherencia y actualizacion de los datos entre el almacenamiento local y la nube.
Sincronizacién

Al iniciar sesién, la aplicacién descarga los datos del usuario desde la nube y los
guarda localmente en el dispositivo para un acceso rapido y eficiente. Cuando el
usuario realiza modificaciones mientras esta offline, estos cambios se almacenan
temporalmente en SQLite, garantizando que la informacién no se pierda. Una vez
que el dispositivo recupera la conexion a internet, la aplicacion sincroniza
automaticamente todas las modificaciones almacenadas localmente con la base de
datos en la nube, asegurando que los datos estén actualizados y consistentes en

ambos entornos.
Comunicacion con el Backend

Para operaciones especificas como agendar o cancelar citas, la aplicacion se
comunica con una APl REST desarrollada en ASP.NET Core, lo que garantiza la
integridad y consistencia de los datos al interactuar directamente con la base de
datos MySQL utilizada por el sistema web. Paralelamente, Firebase funciona como

un backend complementario, encargandose de la autenticacion de usuarios, el

54
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

envio de notificaciones y el almacenamiento de datos en tiempo real, ofreciendo asi

una experiencia mas agil y sincronizada para los usuarios.
Seguridad y Control de Acceso

La autenticacion de usuarios se realiza mediante Firebase Auth utilizando el método
de Email y Contrasefa, garantizando un acceso seguro y sencillo. Al momento de
iniciar sesidn, se valida el rol del usuario para determinar sus permisos y el tipo de
interfaz que debe mostrar. Ademas, se implementan reglas de seguridad en
Firestore que restringen el acceso no autorizado a los datos, protegiendo la
informacion sensible. Finalmente, el sistema controla la navegacion segun el rol,
asegurando que cada tipo de usuario —ya sea paciente, doctor o director— acceda
unicamente a las pantallas y funcionalidades que le corresponden.

55
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Tecnologias Utilizadas

Lenguaje: Dart

Dart es el lenguaje de programacién utilizado para
desarrollar la aplicacion moévil con Flutter. Creado
por Google, Dart esta disenado para ser eficiente,
moderno y facil de usar, siendo el lenguaje nativo de
Flutter, lo que garantiza una integracién perfecta con
todos sus componentes. Entre sus caracteristicas

que facilita la reutilizacion del codigo y una | Da r t
Java, lo que reduce la curva de aprendizaje para los

principales, Dart es un lenguaje orientado a objetos
organizacion modular clara. Su sintaxis es limpia y
moderna, similar a lenguajes como JavaScript o
desarrolladores. Ademas, ofrece soporte completo para programacién asincrona
mediante palabras clave como async, await y Future, lo que facilita la gestion de
operaciones como llamadas a APIs o acceso a bases de datos. Dart utiliza
compilacién Just-In-Time (JIT) durante el desarrollo para permitir recargas rapidas
(hot reload) que aceleran la iteracion, y Ahead-Of-Time (AOT) en produccion para
optimizar el rendimiento de la aplicacién. También cuenta con un recolector de

basura eficiente que gestiona la memoria automaticamente, optimizando el uso de
recursos.

En el contexto del proyecto, Dart presenta varias ventajas importantes. Facilita el
desarrollo rapido de interfaces reactivas con Flutter, mejorando la experiencia de
usuario y la productividad del equipo. Ademas, permite mantener una sola base de
coédigo que funciona en multiples plataformas modviles, como Android e iOS,
reduciendo costos y tiempos de desarrollo. Finalmente, Dart ofrece una excelente
integracién con herramientas y servicios clave como Firebase para autenticacion y
backend, asi como con plugins como sqflite para almacenamiento local, brindando
un entorno completo y eficiente para crear aplicaciones mdviles modernas y
robustas.

56
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Framework: Flutter

Flutter es un framework de desarrollo multiplataforma que

permite crear aplicaciones para Android e iOS a partir de una |u
unica base de cddigo, lo que reduce significativamente los

costos y tiempos de desarrollo. Una de sus caracteristicas mas ‘
destacadas es el Hot Reload, que permite ver los cambios en la interfaz de usuario
de forma inmediata, acelerando el ciclo de desarrollo y faciltando Ila
experimentacion. Flutter ofrece un amplio catalogo de widgets personalizables, que
facilitan la construccion de interfaces modernas, responsivas y atractivas. Ademas,
cuenta con un motor grafico propio que no depende de componentes nativos para
renderizar la interfaz, garantizando un aspecto uniforme en todas las plataformas.
Gracias a su compilacién Ahead-Of-Time (AOT), Flutter proporciona un alto

rendimiento y una experiencia fluida para el usuario final.

En el contexto del proyecto, Flutter presenta multiples ventajas. Permite acelerar el
desarrollo de interfaces adaptadas a distintos perfiles de usuario, como pacientes,
doctores y directores, facilitando la creacion de experiencias personalizadas.
También facilita la integracion con Firebase como backend en la nube,
aprovechando servicios como autenticacion, base de datos en tiempo real y
notificaciones. Ademas, mejora la experiencia del usuario final con interfaces
dinamicas, responsivas y altamente personalizables. Finalmente, Flutter soporta el
uso de paquetes adicionales importantes para el proyecto, como firebase core,
firebase_auth, cloud_firestore y sqflite, brindando un ecosistema robusto para el

desarrollo de aplicaciones modviles completas.

57
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

IDE: Visual Studio Code

Visual Studio Code (VS Code) es el entorno de desarrollo
integrado (IDE) utilizado para la creacién de la aplicaciéon mavil
en Flutter. Es una herramienta ligera, rapida y altamente
extensible, desarrollada por Microsoft, que se ha convertido en

uno de los entornos mas populares para el desarrollo de

aplicaciones multiplataforma. \/‘Sua StUd‘O [Ode

Caracteristicas de Visual Studio Code:

Visual Studio Code es un editor de cédigo ligero y rapido que consume pocos
recursos del sistema, lo que lo hace ideal para trabajar en equipos con
especificaciones modestas. Cuenta con extensiones especializadas para Flutter y
Dart que proporcionan funcionalidades como autocompletado, depuracion, testing
y analisis de codigo. Ademas, incluye una terminal integrada que permite ejecutar
comandos directamente sin salir del entorno de desarrollo, soporte para control de
versiones mediante integracion con Git, y una interfaz altamente personalizable
que puede adaptarse a las preferencias del usuario mediante temas, atajos de

teclado y configuraciones especificas.

Ventajas en el contexto del proyecto:

En el contexto del proyecto, Visual Studio Code ofrece un soporte completo para
Flutter y todas sus herramientas asociadas, lo que facilita el desarrollo eficiente de
la aplicacion movil. Su depurador y consola integrada permiten identificar y
corregir errores rapidamente, mejorando la calidad del codigo. Asimismo, facilita
una integracion fluida con Firebase y otras dependencias importantes gracias a
sus terminales y extensiones, lo que contribuye a un entorno de trabajo mas

robusto y productivo para el equipo de desarrollo.

58
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Base de Datos Local: Sqgflite

Para la persistencia de datos local en la aplicacion movil, se ha
utilizado Sqflite, un plugin de Flutter que permite utilizar una
base de datos SQLite de forma local. Esta herramienta es
fundamental cuando se requiere que ciertos datos estén

disponibles sin conexion a internet, mejorando la experiencia

%the

Sqflite es un paquete basado en SQLite que utiliza un motor de base de datos ligero
y ampliamente reconocido por su eficiencia y confiabilidad. Entre sus caracteristicas
principales se encuentra el soporte completo para operaciones CRUD (crear, leer,
actualizar y eliminar), lo que permite una gestion integral de los datos. Ademas,
ofrece la posibilidad de realizar consultas personalizadas mediante sentencias SQL
tradicionales, brindando flexibilidad en el manejo de la informacion. Sqflite también
garantiza la persistencia de datos en modo offline, asegurando que la informacién
esté disponible incluso cuando no hay conexion a la red. Por ultimo, es compatible
con multiples plataformas, funcionando tanto en dispositivos Android como iOS, lo
que lo convierte en una opcion ideal para aplicaciones moéviles multiplataforma.

del usuario en entornos de conectividad limitada.

Caracteristicas de Sqflite:

Ventajas en el contexto del proyecto:

En el contexto del proyecto, Sdflite ofrece varias ventajas importantes. Al almacenar
datos localmente, mejora la eficiencia de la aplicacion al reducir la cantidad de
llamadas innecesarias a servicios en linea, lo que también contribuye a disminuir el
consumo de datos y la dependencia de la conexion a internet. Esta capacidad de
persistencia offline brinda a los usuarios una experiencia mas fluida y confiable,
permitiéndoles acceder y modificar informacién incluso sin estar conectados.
Ademas, Sqflite proporciona un acceso rapido y directo a datos esenciales
almacenados localmente, lo que optimiza el rendimiento general de la aplicacion y

mejora la satisfaccion del usuario.

59
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Backend en la Nube: Firebase

Firebase es la plataforma de desarrollo de aplicaciones moviles

y web proporcionada por Google, y se ha utilizado como backend .

en la nube para la aplicacidn maovil del proyecto. Firebase ofrece ’ Flrebase
una amplia gama de servicios que simplifican la gestion del

backend, permitiendo que los desarrolladores se concentren en la

I6gica del negocio y la experiencia del usuario.
Servicios de Firebase utilizados en el proyecto:

En el proyecto se utilizan varios servicios clave de Firebase para garantizar una
gestion eficiente y segura de los datos y usuarios. Firebase Authentication se
encarga de manejar el registro e inicio de sesidn de los distintos tipos de usuarios,
como pacientes, doctores y directores, proporcionando un sistema seguro vy
confiable para la autenticacién. Por otro lado, Cloud Firestore funciona como la base
de datos NoSQL en tiempo real, almacenando informacién vital como expedientes
médicos, conversaciones de chat y la programacion de citas. Gracias a esta
combinacion, el proyecto puede ofrecer una experiencia fluida, segura vy

sincronizada en tiempo real para todos los usuarios involucrados.
Ventajas de Firebase en el contexto del proyecto:

Firebase aporta numerosas ventajas que potencian el rendimiento y la confiabilidad
de la aplicacién. Su escalabilidad automatica permite que la plataforma se adapte
sin esfuerzo a un numero creciente de usuarios, sin necesidad de configurar
manualmente los servidores, lo que facilita el crecimiento del sistema. La capacidad
de sincronizacion en tiempo real garantiza que los datos, como mensajes de chat y
actualizaciones de citas, se actualicen instantdneamente entre usuarios, mejorando
la comunicacion y la coordinacion. Ademas, al estar alojado en la nube de Google,
Firebase ofrece alta disponibilidad y un servicio estable, asegurando que la

aplicacion esté siempre accesible. Finalmente, Firebase proporciona reglas de

60
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

seguridad personalizadas que protegen la informacibn médica sensible,

garantizando la privacidad y cumplimiento de normativas de seguridad.

Uso estratégico en el proyecto:

Firebase actua como el intermediario entre el frontend moévil desarrollado en Flutter
y la légica del negocio, ofreciendo funcionalidades criticas como autenticacion,
almacenamiento seguro, mensajeria instantanea y gestién de datos estructurados

y no estructurados en la nube.

Firestore (Base de Datos en la Nube)

Para la gestion de datos en la nube en la aplicacion mévil, se ha utilizado Cloud
Firestore, un servicio de base de datos NoSQL proporcionado por Firebase.
Firestore es una base de datos flexible, escalable y en tiempo real, ideal para

aplicaciones moviles modernas como la desarrollada en este proyecto.

Caracteristicas principales de Firestore:

Firestore es una base de datos NoSQL que organiza la informacién mediante una
estructura basada en documentos y colecciones, donde las colecciones funcionan
como tablas y los documentos como filas, lo que facilita el almacenamiento tanto de
datos estructurados como semiestructurados. Una de sus principales caracteristicas
es la sincronizacion en tiempo real, que permite que cualquier cambio en la base de
datos se refleje automaticamente en la interfaz del usuario sin necesidad de
recargar la aplicacién. Ademas, Firestore ofrece alta disponibilidad al ser un servicio
completamente administrado y alojado en la nube de Google, garantizando
estabilidad y confiabilidad. También soporta consultas complejas, incluyendo filtros,
ordenamientos, paginacion y combinaciones de condiciones, lo que brinda
flexibilidad para acceder y manipular los datos de manera eficiente.

Uso de Firestore en el proyecto:

« Gestion de citas médicas: Creacion, modificacion y cancelacién de citas en
tiempo real.
« Almacenamiento de expedientes médicos: Documentos clinicos asociados a

cada paciente, accesibles solo por el usuario autorizado.

61
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

o Sistema de chat en tiempo real: Comunicacién directa entre pacientes y
doctores, con mensajes almacenados en colecciones especificas por
conversacion.

e Control de usuarios y roles: Informacién sobre cada usuario autenticado,

incluyendo su rol (paciente, doctor, director) y configuracion de perfil.

Ejemplo de estructura de datos:

Citas b citalddse > + Agregar campo
docTED
2cha: "2023-06-01

re: 10200

userld123

llustracion 32: visualizacion de la estructura de datos registrados para agendar citas

Firebase Cloud Messaging (Notificaciones Push)

Firebase Cloud Messaging (FCM) es el servicio utilizado en la aplicacién movil
para el envio de notificaciones push a los usuarios. Este componente mejora
significativamente la interaccion entre el sistema y sus usuarios al mantenerlos
informados en tiempo real sobre eventos relevantes, como la confirmacion,

reprogramacion o cancelacion de citas médicas.

Caracteristicas de FCM:

Firebase Cloud Messaging (FCM) permite el envio dirigido de mensajes a
dispositivos individuales, grupos de usuarios o0 suscriptores a temas especificos,
garantizando que las notificaciones lleguen al publico adecuado. Las notificaciones
pueden mostrarse tanto en primer plano como en segundo plano, siendo visibles
incluso cuando la aplicacién esta cerrada, lo que asegura que los usuarios estén
siempre informados. Respaldado por la infraestructura de Google, FCM ofrece una
alta tasa de entrega y eficiencia en el envio de mensajes. Ademas, su integracion
con otros servicios de Firebase como Authentication y Firestore facilita su
implementacion y coordinacion con el resto del sistema.

En el proyecto, FCM se utiliza para varios casos de uso clave que mejoran la
comunicacién con los usuarios. Por ejemplo, cuando un paciente programa una cita,
recibe una notificacion con los detalles relevantes como fecha, hora y doctor
asignado. Si el doctor reprograma una cita, el paciente es notificado al instante, y
en caso de cancelacion de citas, ya sea por parte del paciente o del personal
meédico, se envian alertas automaticas para mantener a todos informados. También

62
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

se emplea para enviar mensajes importantes del sistema o del director, tales como
recordatorios de citas o comunicaciones urgentes, asegurando que la informacion
critica llegue oportunamente a los usuarios.

Uso de FCM en el proyecto:

Confirmaciéon de citas: Cuando un paciente programa una cita, recibe una
notificacion con los detalles (fecha, hora y doctor asignado).

Reprogramacion por parte del doctor: Si el doctor cambia la cita, el paciente es
notificado al instante.

Cancelacion de citas: Notificacion automatica cuando una cita es cancelada, ya
sea por el paciente o por el personal médico.

Mensajes importantes del sistema o del director: Alertas administrativas, como

recordatorios de cita 0 mensajes urgentes.

Implementacién técnica:

La implementacion técnica de Firebase Cloud Messaging (FCM) en Flutter se realiza
principalmente mediante los paquetes firebase _messaging y
flutter_local_notifications. Estos paquetes permiten gestionar tanto la recepcion
como la visualizacion de notificaciones en diferentes estados de la aplicacion, ya
sea en primer plano, segundo plano o cuando la app esta cerrada. Cada dispositivo
registra un token unico con FCM, el cual se asocia al usuario autenticado para dirigir
las notificaciones de manera personalizada. Para enviar las notificaciones, se puede
utilizar directamente Firestore o implementar funciones en la nube (Cloud Functions)
gue reaccionen a eventos especificos, como la creacién de un nuevo documento
relacionado con una cita, desencadenando asi notificaciones programadas o
automaticas para mantener a los usuarios informados en tiempo real.

Ventajas de usar FCM:

Gratuito y altamente escalable.

Bajo consumo de bateria y datos.

Personalizacion del contenido y acciones de las notificaciones.
Compatibilidad multiplataforma (Android, iOS y Web).

63
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Uso de Servicios REST para Integracion con el Sistema Web

La arquitectura del proyecto permite la integracidn entre los distintos moédulos del
sistema (web y movil) mediante servicios web RESTful, lo que facilita la

interoperabilidad, la escalabilidad y la independencia de plataformas.

¢Qué es una API REST?

Una API REST (Representational State Transfer) es una interfaz que
permite la comunicacion entre sistemas utilizando los métodos
estandar del protocolo HTTP (GET, POST, PUT, DELETE). Las APIs

REST son ampliamente utilizadas por su simplicidad, eficiencia y

REST API

compatibilidad multiplataforma.

Implementacion de Servicios REST en el Proyecto Web

El sistema web, desarrollado con ASP.NET Core MVC, puede actuar como
proveedor de servicios REST a través de controladores tipo ApiController,
exponiendo datos almacenados en MySQL mediante endpoints que pueden ser

consumidos por la aplicacion movil u otros sistemas externos.

Ejemplos de Endpoints REST Web:

e GET /api/doctores — Lista todos los doctores registrados.

o GET /api/especialidades — Muestra todas las especialidades médicas
disponibles.

o POST /api/citas — Permite registrar una nueva cita médica.

o PUT /api/citas/{id} — Actualiza una cita médica.

« DELETE /api/citas/{id} — Elimina una cita especifica.

Estos servicios hacen uso del ORM Entity Framework Core para interactuar con

la base de datos MySQL, asegurando un acceso estructurado y seguro a los datos.

Integracion con la Aplicacion Movil

64
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

La app movil desarrollada en Flutter puede consumir estos servicios REST
mediante librerias como http, dio o integraciones con Retrofit para Dart, permitiendo

que los modulos web y movil compartan informacion cuando sea necesario.

Uso de integracion:

« Sincronizacion de informacién de doctores y especialidades en la app mdvil.

e Visualizacion de citas programadas creadas desde la plataforma web.

e Administracion centralizada de usuarios y control de acceso desde el
BackOffice web.

Funcionalidades por Rol: Paciente

El rol de Paciente esta disefiado para brindar a los usuarios acceso sencillo, seguro
y eficiente a los servicios médicos ofrecidos a través de la plataforma. Las
funcionalidades disponibles para este perfil estdn orientadas a mejorar la
experiencia del usuario, permitiendo una gestion autbnoma de sus citas y la consulta

de su informacién médica.
Registro/Login (Firebase Authentication).

Firebase Authentication permite que los pacientes se registren y autentiquen de
manera sencilla y segura utilizando correo electrénico y contrasefia. Ademas, ofrece
la posibilidad de ampliar los métodos de autenticacion incluyendo proveedores
externos como Google o Facebook, facilitando el acceso a la aplicacion mediante
cuentas ya existentes. Este servicio no solo garantiza una gestién eficiente de las
sesiones de usuario, sino que también proporciona una capa robusta de seguridad,
siendo escalable para manejar desde pocos hasta miles de usuarios sin

comprometer el rendimiento ni la proteccion de la informacion.

Solicitud y Cancelacién de Citas

En el sistema, el paciente tiene la capacidad de solicitar y cancelar citas de manera

sencilla desde su dispositivo movil. Primero, puede navegar por las diferentes

65
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

especialidades médicas disponibles y, al seleccionar una, se despliega una lista de
doctores junto con sus horarios disponibles. El paciente entonces elige la fecha y
hora que mejor le convenga para crear la cita, la cual se almacena de forma
inmediata en Firestore, garantizando que la informacion se sincronice en tiempo real
con el sistema central. Asimismo, el paciente puede cancelar una cita directamente
desde la aplicacion, y dicha accion se registra y actualiza al instante, manteniendo
la base de datos actualizada y permitiendo una gestién eficiente y transparente de

las agendas médicas.

Visualizacién de Expediente Médico

La aplicacion movil permite al paciente acceder a una visualizacion resumida de su
expediente médico de manera rapida y segura. Este expediente incluye informacién
general del paciente, un historial detallado de citas anteriores, asi como
diagnosticos o notas médicas registradas por los doctores. Los datos mostrados se
sincronizan constantemente desde Firestore o, alternativamente, desde una API
qgue conecta con la base de datos del sistema web, garantizando que la informacién
esté siempre actualizada y disponible para el paciente en tiempo real. Esta
funcionalidad facilita el seguimiento de su salud y mejora la comunicaciéon entre

paciente y personal médico.

Cambio de Fecha/Hora de Cita

El sistema permite al paciente modificar una cita previamente programada cuando
surgen imprevistos, brindandole flexibilidad para elegir una nueva fecha y hora
disponible segun el calendario actualizado del doctor. Antes de confirmar el cambio,
el sistema realiza una validacion para asegurar que el nuevo horario esté libre y no
genere conflictos en la agenda médica. Una vez confirmado el ajuste, el doctor
recibe una notificacion automatica mediante Firebase Cloud Messaging,
garantizando que esté informado en tiempo real sobre cualquier modificacion en su
agenda, lo que mejora la coordinacion y comunicacion entre pacientes vy

profesionales de salud.

66
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Funcionalidades por Rol: Doctor

El rol de Doctor esta orientado a proporcionar herramientas que faciliten la gestion
de sus pacientes y citas, permitiendo un control mas eficiente y personalizado del
proceso de atencion médica. Este perfil cuenta con acceso extendido a la
informacion clinica y funcionalidad para mantener actualizado el expediente de sus

pacientes.
Gestion de Citas Programadas

El sistema ofrece al doctor la capacidad de gestionar sus citas programadas de
manera eficiente desde su panel en la aplicacion movil. Puede consultar todas las
citas agendadas organizadas por fecha y hora, lo que facilita la planificacion de su
jornada. Ademas, tiene acceso a informacion relevante como los datos del paciente,
el motivo de consulta cuando ha sido ingresado, y la especialidad asignada a cada
cita. Esta funcionalidad permite al doctor organizar su agenda diaria de forma clara
y anticipada, optimizando su tiempo y mejorando la preparacion para las atenciones

médicas.

Edicion de Expediente Clinico

El doctor cuenta con acceso completo al expediente clinico de cada paciente que
tiene asignado, lo que le permite gestionar de manera integral la informacién
médica. Desde la aplicacion, puede afiadir, modificar o eliminar datos clinicos
importantes, tales como diagnosticos, observaciones médicas y tratamientos
indicados, asegurando que el historial médico esté siempre actualizado y refleje el
estado real del paciente. Toda esta informacién se almacena en Firebase Firestore
0 se sincroniza con el sistema web a través de una APl REST, garantizando la
persistencia de los datos y su actualizacién en tiempo real para que tanto el personal

médico como el paciente tengan acceso a informacion precisa y oportuna.

67
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Notificacion al Paciente en Caso de Cambio

Cuando el doctor necesita modificar una cita por motivos de disponibilidad o
emergencias, tiene la opcidon de cambiar la fecha y/o la hora programada. Al realizar
esta modificacion, el sistema actualiza inmediatamente el estado de la cita en
Firestore y/o en la base de datos MySQL, asegurando que la informacion esté
sincronizada en todas las plataformas. Ademas, se envia automaticamente una
notificacion al paciente a través de Firebase Cloud Messaging (FCM), informandole
del nuevo horario para mantenerlo al tanto de los cambios. Finalmente, la
modificacion queda registrada en el historial del sistema, facilitando el control

administrativo y el seguimiento de todas las alteraciones realizadas sobre las citas.

Administracion de Doctores

El director cuenta con un panel de control administrativo que le permite gestionar de
manera eficiente el personal médico del sistema. Desde esta interfaz, puede
agregar nuevos doctores registrando su informacién basica como nombre, correo
electrénico, credenciales y otros datos relevantes para su identificacién y contacto.
Ademas, tiene la capacidad de consultar el listado completo de doctores registrados,
lo que facilita la supervision y organizaciéon del equipo médico. En caso de
actualizaciones o cambios en la informacion de los doctores, el director puede
modificar los datos directamente desde el panel, asegurando que el sistema siempre

mantenga informacion precisa y actualizada sobre el personal.

Asignacion de Especialidades y Horarios

Al crear o editar el perfil de un doctor, el director tiene la capacidad de asignarle una
o varias especialidades médicas acorde a su formacion y certificaciones,
asegurando que cada profesional esté correctamente categorizado dentro del
sistema. Ademas, puede establecer y configurar el horario de trabajo semanal para
cada médico, definiendo sus disponibilidades para la atencién a pacientes. También
es posible gestionar rotaciones o realizar cambios en los horarios segun las
necesidades del centro médico, brindando flexibilidad en la organizaciéon del

68
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

personal. Toda esta informacion queda registrada y sincronizada, siendo accesible
tanto desde el sistema web como desde la aplicacién movil, lo que facilita su uso

efectivo en el proceso de agendamiento de citas.

Eliminacion de Personal Médico

e En caso de retiro, licencia prolongada o baja del personal, el director puede:

« Eliminar doctores del sistema, deshabilitando su acceso y disponibilidad en
la plataforma.

o Esta accion también actualiza automaticamente los horarios y disponibilidad

visibles para los pacientes al momento de agendar citas.

Persistencia de Datos en el Médulo Web (ASP.NET Core MVC)

Entity Framework Core

Entity Framework Core es un ORM (Object-Relational Mapping) que se utiliza para
gestionar de manera eficiente las operaciones con la base de datos relacional
MySQL en el proyecto. Gracias a esta herramienta, las clases definidas en C# se
mapean automaticamente a las tablas correspondientes en la base de datos, lo que
simplifica significativamente la manipulacion y consulta de datos. Ademas, EF Core
permite trabajar con LINQ, proporcionando una forma intuitiva y potente de realizar
consultas, actualizaciones y otras operaciones sobre la base de datos sin necesidad

de escribir codigo SQL directamente.

MySQL como motor de base de datos

La base de datos relacional utilizada en el proyecto almacena informacion clave
como los datos de usuarios (doctores, pacientes y director), citas médicas,
especialidades y los historiales médicos que se sincronizan desde la aplicacion
movil cuando corresponde. Esta estructura organizada permite gestionar
eficientemente grandes volumenes de datos relacionados, garantizando Ila
coherencia y el acceso rapido a la informacién necesaria. Entre sus principales
ventajas destacan la escalabilidad, que facilita el crecimiento del sistema sin perder

69
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

rendimiento; la fiabilidad, que asegura la integridad y disponibilidad de los datos; y
el soporte para integridad referencial, que mantiene la consistencia entre las

diferentes tablas y relaciones dentro de la base de datos.
Contexto AppDbContext

o Clase que actua como punto de conexion entre la aplicacion y la base de
datos.

o Configurado para manejar las entidades del sistema y sus relaciones (citas,
doctores, especialidades, etc.).

o Utiliza migraciones para crear y actualizar el esquema de la base de datos

automaticamente.
Persistencia de Datos en el Médulo Moévil (Flutter + Firebase)
Firebase Firestore (Base de datos en la nube)

Firebase Firestore es una base de datos en la nube utilizada para almacenar
informacion dinamica y sincronizada del sistema, como las citas agendadas por los
pacientes, los cambios realizados en los expedientes médicos por los doctores, y
los datos actualizados del perfil de usuario. Esta base de datos NoSQL destaca por
ofrecer sincronizacion en tiempo real, lo que permite que cualquier modificacion se
refleje instantdneamente en los dispositivos méviles de los usuarios. Ademas,
cuenta con escalabilidad automatica, facilitando que la aplicacion pueda crecer y
manejar un numero creciente de usuarios sin necesidad de ajustes manuales en la

infraestructura, garantizando asi un servicio fluido y confiable.
sqflite (Base de datos local en Flutter)

Utilizada en Flutter para el almacenamiento temporal de datos cuando el
dispositivo no cuenta con conexion a Internet. Esta base de datos permite guardar
citas y mantener copias de los expedientes médicos directamente en el
dispositivo, asegurando que la aplicacion continue funcionando sin interrupciones
en modo offline. Una vez que la conectividad se restablece, Sqflite sincroniza

70
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

automaticamente la informacion almacenada localmente con Firebase Firestore,
garantizando que todos los datos estén actualizados y consistentes tanto en el

dispositivo como en la nube.

Sincronizacién

e Se implementa légica en Flutter para sincronizar datos entre:
o sdflite (local).
o Firestore (nube).

o API REST del sistema web (cuando se requiere compartir datos).

Firebase Firestore para Almacenamiento en la Nube

Firebase Firestore es el servicio de base de datos NoSQL en tiempo real ofrecido

por Google como parte de la plataforma Firebase. En este proyecto, se utiliza

Firestore como la principal solucion de almacenamiento en la nube para

aplicacion movil desarrollada en Flutter.

Caracteristicas Clave

la

e Modelo de documentos y colecciones: Firestore organiza los datos en

documentos que se agrupan dentro de colecciones, permitiendo una

estructura flexible y escalable.

e Sincronizacion en tiempo real: Cualquier cambio en los datos se refleja

automaticamente en los dispositivos conectados, lo que permite una

experiencia de usuario fluida e interactiva.

o Escalabilidad automatica: Firestore ajusta automaticamente la capacidad

segun la demanda, ideal para aplicaciones con crecimiento de usuarios.

o Altadisponibilidad y replicacién: Los datos se replican en multiples centros

de datos para garantizar redundancia y confiabilidad.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

71

Uso en el Proyecto

En el contexto de esta aplicacion, Firestore se emplea para almacenar y gestionar

la informacion relevante a cada uno de los roles del sistema:
Paciente

« Citas médicas registradas.
« Resumen de su expediente clinico.

e Mensajes enviados al doctor.
Doctor

o Lista de citas programadas.
« Informacién médica editable de cada paciente.

o Historial de interacciones con pacientes.
Director

o Datos de los doctores agregados o modificados desde la app.

« Cambios de horarios y asignacion de especialidades (si aplica desde movil).

Integracion con Flutter

o Se utiliza el plugin cloud_firestore para conectarse y operar sobre Firestore
desde Flutter.

e Las operaciones CRUD (crear, leer, actualizar, eliminar) se implementan de
forma asincrona para garantizar fluidez en la interfaz de usuario.

e La aplicacién escucha en tiempo real los cambios en los documentos
relevantes (por ejemplo, notificaciones sobre citas), permitiendo una

actualizacion inmediata sin necesidad de recargar vistas.

Seguridad y Reglas
Las reglas de seguridad de Firestore se configuran cuidadosamente para
garantizar que el acceso a los datos esté restringido segun el rol del usuario

72
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

autenticado. De esta manera, los pacientes unicamente pueden leer y modificar su
propia informacion, asegurando su privacidad. Los doctores, por su parte, tienen
permiso para acceder exclusivamente a los datos de los pacientes que les han
sido asignados, lo que permite una gestion clinica segura y controlada. En cambio,
el director cuenta con privilegios mas amplios para supervisar y administrar la
informacion dentro del sistema. Estas reglas se implementan directamente desde
el panel de Firebase Console, utilizando Firebase Authentication como el
mecanismo de identidad que valida y determina los permisos de cada usuario,
garantizando asi un acceso seguro y personalizado a los recursos.

sqflite para Almacenamiento Local Offline

Para garantizar la funcionalidad de la aplicacion mavil incluso sin conexion a
Internet, se ha implementado una capa de persistencia local utilizando la biblioteca

sqflite, que permite el uso de SQLite en aplicaciones desarrolladas con Flutter.

Rol de sqflite en el Proyecto

El sistema cuenta con un almacenamiento temporal que guarda datos criticos
como las citas agendadas por el paciente, la informacién resumida del expediente
médico y los datos del perfil del usuario autenticado. Esto asegura que la
informacion esencial esté disponible de manera rapida y eficiente para su consulta
y actualizacion.

Ademas, se garantiza la operatividad offline, permitiendo que el paciente pueda
consultar sus citas y su expediente médico sin necesidad de estar conectado a
Internet. Los cambios realizados localmente se almacenan y se sincronizan
automaticamente con Firestore cuando la conexion a la red se restablece,

manteniendo la informacioén actualizada y consistente.

Este enfoque también soporta funcionalidades clave de la aplicacion, como mostrar
las citas programadas en modo offline, editar y guardar temporalmente los registros
clinicos hasta que puedan ser subidos a la nube, y reducir el tiempo de carga inicial
mediante el uso de caché local, mejorando asi la experiencia del usuario y la

eficiencia del sistema.

73
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Ventajas del Uso de sqflite

o Velocidad: Acceso rapido a datos locales sin latencia de red.
o Persistencia: Los datos se conservan, aunque se cierre o reinicie la app.
« Compatibilidad: Disponible tanto para Android como para iOS.

o Simplicidad: Interfaz directa para realizar operaciones SQL (CRUD).

Integracién con Firestore

Se ha implementado una légica de sincronizacion entre la base de datos local

(sqflite) y Firestore (nube):

Se implementa una logica de sincronizacién automatica con Firestore al detectar
conexiéon a Internet, garantizando coherencia entre dispositivos. Se usan DAOs
personalizados para gestionar el acceso a datos, y se manejan los estados
mediante Provider o Riverpod. Ademas, se aplican politicas para resolver conflictos

de sincronizacion, incluyendo actualizaciones y eliminaciones locales.

Sincronizacion de Datos Local/Nube

Una funcionalidad critica en aplicaciones méviles modernas es la capacidad de
operar sin conexion a Internet y mantener la coherencia de los datos una vez que
se restablece la conectividad. En este proyecto, se implementé un mecanismo de
sincronizacién bidireccional entre sqflite (almacenamiento local) y Firebase
Firestore (almacenamiento en la nube), permitiendo al usuario una experiencia

fluida tanto online como offline.

Objetivos de la Sincronizacion

La sincronizacién en el sistema tiene como objetivo principal permitir una
funcionalidad offline completa para pacientes, doctores y directores, asegurando
que puedan realizar operaciones esenciales incluso sin conexion a Internet. Esto
reduce la dependencia inmediata de la red para actividades basicas como visualizar
citas o editar datos clinicos, mejorando la continuidad del servicio.

Ademas, se busca garantizar la coherencia de los datos entre la informacién
almacenada localmente en el dispositivo y la que se encuentra persistida en

74
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Firestore, evitando inconsistencias. Para ello, se implementan mecanismos de
control de versiones y marcas de tiempo que evitan la generacion de datos
duplicados o la sobrescritura de informacion errénea, asegurando la integridad y
precision de los registros.

Estrategia de Sincronizacién Implementada

La estrategia de sincronizacion implementada en la aplicacién es manual pero con
un control automatico de conflictos, disefiada para mantener la coherencia y
actualizacion de los datos entre el dispositivo local y Firestore. Para ello, cada
registro que se modifica localmente se marca con un campo isSynced = false junto
con una marca de tiempo (timestamp), lo que permite identificar facilmente los
cambios pendientes de sincronizacion.

Para asegurar que la sincronizacion se realice en el momento adecuado, se utiliza
un monitor de conectividad basado en el paquete connectivity plus, que detecta
cambios en el estado de la red. Cuando la aplicacién identifica que el dispositivo
ha recuperado la conexion a Internet, se activa un proceso en segundo plano que
sube a Firestore todos los registros locales que aun no han sido sincronizados, y a
su vez actualiza los datos locales con cualquier cambio que haya ocurrido en la
nube desde la ultima sincronizacion.

En cuanto a la resolucion de conflictos, se aplica una regla sencilla pero efectiva:
se prioriza siempre el dato mas reciente segun la timestamp asociada. De esta
manera, se minimizan las pérdidas de informacion y se mantiene la integridad y
precision de los datos en ambas fuentes.

Componentes Técnicos

o Firebase Firestore:
o Base de datos central sincronizada entre dispositivos.
o sqflite:
o Base de datos local para uso offline.
e Provider / Riverpod (u otro gestor de estado):
o Administra el flujo de datos entre la I6gica de negocio y la interfaz.
o Timestamps y flash:

o Cada entidad contiene un lastUpdated y un isSynced.

75
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Casos de Uso Comunes

Accién Estado Offline Sincronizacién Posterior
. Guardada en sqflite con Se sube a Firestore cuando hay
Crear cita . >
isSynced = false conexién
Editar Cambios se almacenan

_ Se actualiza Firestore al reconectarse
expediente localmente

. _ Se marca como eliminada en Se borra de Firestore si el estado es
Eliminar cita

local sincronizable

TaBLa 3: CasoS DE USO COMUNES
Beneficios Obtenidos

o Experiencia de usuario sin interrupciones.

e Tolerancia a fallos de red.

« Reduccion de llamadas a la nube, lo cual mejora el rendimiento y reduce
costos.

o Consistencia eventual asegurada por la estrategia de sincronizacion
diferida.

Diseio de Ul Responsiva con Flutter (Material Design)

El disefo de interfaces en aplicaciones moviles no solo debe ser estéticamente
agradable, sino también funcional, accesible y adaptable a distintos dispositivos. En
este proyecto, se utilizd Flutter como framework de desarrollo, aprovechando su
soporte nativo para Material Design y sus capacidades integradas para construir

interfaces responsivas.

Fundamentos de Material Design

Material Design es un sistema de disefio desarrollado por Google que proporciona
directrices visuales y de interaccion para construir interfaces coherentes, accesibles
y modernas. Sus principios clave son:

76
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

« Jerarquia visual clara (tipografia, color, iconografia).
o Transiciones y animaciones suaves.
« Componentes reutilizables (botones, tarjetas, listas).

« Enfoque en la accesibilidad y usabilidad.

Flutter implementa Material Design de forma nativa mediante widgets como

Scaffold, AppBar, FloatingActionButton, TextField, Card, entre otros.

Estructura Visual de la Aplicacion

La aplicacion movil se estructura visualmente en base a:

o Layouts responsivos con MediaQuery, LayoutBuilder y Flexible, que
ajustan el contenido segun el tamafno de pantalla.
« Navegacién modular utilizando Navigator, BottomNavigationBar y Drawer.

o Estilos centralizados con ThemeData para asegurar coherencia visual.

Widgets y Componentes Personalizados

Se desarrollaron widgets personalizados para mantener la consistencia visual y

mejorar la reutilizacion del codigo:

e CustomAppointmentCard: muestra citas médicas de forma compacta.
o DoctorProfileTile: presenta detalles del doctor con su especialidad.
« ResponsiveScaffold: estructura adaptable que cambia entre disefio de una

sola columna y multiples columnas segun el tamafo del dispositivo.

Adaptabilidad y Escalabilidad

Para que la app funcione bien en teléfonos, tablets y distintas resoluciones, se
usaron disefos fluidos con Expanded y Flexible, que permiten adaptar los
elementos al espacio disponible. Ademas, se ajustan automaticamente el tamano
de fuentes e iconos usando MediaQuery.textScaleFactorOf(context) e lconTheme,
garantizando una interfaz escalable y comoda en cualquier dispositivo.

77
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Accesibilidad

Se prestd especial atencion a las buenas practicas de accesibilidad:

e Contraste adecuado de colores.
e Soporte para lectores de pantalla (Semantics).
« Tamanos de texto escalables.

o Botones e interacciones tactiles amigables.

Ejemplo de Codigo
import "package:flutter/material.dart’;

class PatientDashboard extends StatelesswWidget {
const PatientDashboard({super.key});

goverride

Widget build(BuildComtext context) {
~eturn Scaffold(
body: Container(
decoration: BoxDecoration(
gradient: LimearGradienty
colors: [OColors.teal.shadeld®, [cColors.white]
begin: Alignment.topCenter,
end: Alignment.bottomCenter,

¥

5 LinearGradient
1s BoxDecoration
child: Padding(

padding: const Edgelnsets.all(l&.8},

child: Columni

children: [
const SizedBox{height: 48),
Center(

child: Image.asset(
"lib/img/logol.png’,

height: B8,
) Image.asset
1a Center
const SizedBox{height: 18),
Text(

"Dashboard del Paciente”,
style: Textstyle(

fontSize: 234,

fontkWeight: FontWeight.bold,

color: BMcolors.teal[sad],
)i axtstyle

textAlign: Textalign.center,
1s ext

const SizedBox{height: 24},

llustracion 33: muestra la lI6gica de personalizacion de estilos aplicados en los widgets.

78
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Beneficios Obtenidos

o Interfaz intuitiva y atractiva para todos los roles (paciente, doctor,
director).

« Experiencia de usuario consistente en diferentes dispositivos.

e Reduccion del tiempo de desarrollo gracias al enfoque declarativo de
Flutter.

o Facilidad de mantenimiento y escalabilidad.

Formularios Dinamicos y Navegacion Intuitiva

La interaccion del usuario con la aplicacidon mévil se basa en gran parte en la gestion
eficiente de formularios y una navegacion clara. Para ello, se aplicaron practicas
modernas de disefio y desarrollo con Flutter, aprovechando su capacidad para

construir formularios dinamicos y flujos de navegacion fluidos e intuitivos.

Formularios Dinamicos

Los formularios permiten capturar datos clave del usuario, como el registro de una
cita, actualizacion del expediente médico o edicion de perfil. En este proyecto se
utilizaron formularios dinamicos y validados en tiempo real, construidos mediante

el widget Form y TextFormField, junto con légica condicional.

Caracteristicas clave:

« Campos adaptativos: se muestran u ocultan segun la seleccion del usuario
(por ejemplo, especialidad seleccionada filtra los doctores disponibles).

o Validaciones automaticas: formatos de correo, fechas validas, campos
requeridos, etc.

e Integracion con backend: al enviar los formularios, los datos son
almacenados directamente en Firebase Firestore o enviados al backend
web mediante API REST.

79
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Ejemplo de formulario dinamico:

wvoid registerDirector({BuildContext context) async {
final name = nameController.text.trim();
final email = emailController.text.trim();
final password = passwordController.text.trim{);
final confirmPassword = confirmPasswordController.text.trim();

if (mame.isEmpty || email.isEmpty || password.isEmpty || confirmPassword.isEmpty) {
_showError({"Todos los campos son obligatorios.™);
return;
I
if (password != confirmPassword) {
_showError("Las contrasefas no coinciden.™);
return;
}
try {
{ Registrar en Firebase auth
UserCredential userCredential = await FirebaseAuth.instance

.createlserkWithEmailandPassword(email: email, password: password);
String uid = wseriredemtial.user!.uwid;

f/ Guardar en Firestore

gwait FirebaseFirestore.instance.collection(’uwsuvarios').doc{uid).set (]
'nombre’: name,
'rol’: "Director’,
‘correon’: email,

3 ¥

Mavigator.pop(comtext); // Puedes redirigir a una pantalla principal si deseas

} on FirebaseduthException catch (e} {

string error = "Error al registrar.”;

if (e.code == "email-already-in-use’) {
error = "El correoc ya estd en uso.”;

t else if (e.code == 'invalid-email’
error = "Corresc inwvalido.™;

} else if (e.code == 'weak-password’) {
error = "La contrasefa es muy debil.”™;

et

_showError{error);
} catch (e} {
_showError({"0Ocurrid un error inesperado.”);

}

llustracion 34: muestra la légica de los formularios utilizados para registrar usuarios

Navegacion Intuitiva

Una buena experiencia de usuario depende de una navegacion fluida y clara. Para
lograrlo, se empled el sistema de rutas de Flutter y se estructuraron las vistas segun
el rol del usuario (Paciente, Doctor, Director), con un enfoque de navegacion

modular y centralizada.

80
2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

Herramientas y componentes utilizados:

« Navigator y Named Routes: para controlar el flujo entre pantallas.
« BottomNavigationBar para pacientes y doctores.
o Drawer (Menu lateral) para el rol de director.

o WillPopScope para manejar correctamente la navegacion hacia atras.

Organizacion por rol:

o Paciente: navegacion sencilla entre cita, expediente, chat y perfil.
e Doctor: acceso directo a citas programadas, expediente clinico y
notificaciones.

o Director: panel administrativo con navegacion lateral.

Ejemplo de navegacion:

ctlass InitialScreenstate extends State<InitialScreenz
Futuresvoid» checkRoleAndNavigate() async {
final prefs = awalt SharedPreferences.getlnstance();

final role = prefs.getString('role’);

if (!mounted) return;
i ‘director') {
~.pushReplacementiamed (context, '/director_dashboard'’};
1 {role == "doctor') {
pushReplacementMamed (context, 'Sdoctor_dashboard®);

1 f {role == "patient'} {

gator.pushReplacementiamed (context, 'fpatient_dashboard’);
} else |

lavigator.pushReplacementiamed (context, "flogin®);

llustracion 35: muestra la logica para verificar el rol del usuario almacenado en los registros y redirigirlo a su
perfil correspondiente.

Beneficios obtenidos

Los beneficios obtenidos incluyen una experiencia de usuario optimizada, que evita
recargas innecesarias y ofrece interacciones guiadas y validadas para reducir
errores. Ademas, la modularidad y mantenibilidad del cédigo mejoran gracias a la
separacion por rutas y el uso de formularios reutilizables. Todo esto contribuye a
una mayor productividad del usuario final, al proporcionar flujos de trabajo claros,
I6gicos y sencillos.

81
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Accesibilidad y Adaptabilidad

La accesibilidad y adaptabilidad son componentes clave para garantizar que la
aplicacion movil pueda ser utilizada por una amplia gama de usuarios, incluyendo
personas con diferentes capacidades y dispositivos con diversas caracteristicas de
pantalla. En el desarrollo de este proyecto en Flutter, se implementaron diversas

practicas enfocadas en hacer la aplicacién inclusiva, funcional y adaptable.
Accesibilidad

Flutter ofrece soporte integrado para accesibilidad, lo cual facilita el desarrollo de
interfaces que cumplen con estandares como WCAG (Web Content Accessibility

Guidelines). En este proyecto se consideraron los siguientes aspectos:
Ejemplo:

Fow
children: [
Expanded(
child: Text
'Fecha y hora: ${dateTime.toString().substring(8, 16)}°,
style: const TextStyle(fontSize: 1&),

TextButton{
onPressed: selectDatelime,
child: const Text({'Seleccionar'),

15t SizedBox{height: 24),

Elevateddutton
onPressed: createfppointment,

child: const Text('Crear Cita'),

llustracion 36: muestra la logica de personalizacion de textos, colores y controles accesibles.

Adaptabilidad

La adaptabilidad asegura que la aplicacion se visualice correctamente en una
amplia gama de dispositivos (smartphones, tablets) y en distintas orientaciones de

pantalla. En este proyecto se aplicaron los principios de responsive design:

82
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Implementaciones clave:

Estas permiten que los widgets se ajusten dinamicamente segun las dimensiones
del dispositivo, como el ancho, alto y orientacion de la pantalla, lo que garantiza que
la experiencia del usuario sea 6ptima tanto en teléfonos moéviles pequenos como en
tablets o dispositivos con pantallas mas grandes. Este tipo de disefio es fundamental
para mantener la coherencia visual y funcionalidad sin importar el dispositivo que

se utilice.

Ademas, se incorporaron widgets flexibles y escalables, como Expanded, Flexible,
Wrap, GridView vy ListView, que ofrecen una gran versatilidad para organizar el
contenido de forma eficiente y adaptable. Estos widgets permiten que los elementos
dentro de la interfaz crezcan, se contraigan o se redistribuyan segun el espacio
disponible, lo que ayuda a evitar problemas de desbordamiento o espacios vacios

en la pantalla.

Finalmente, se incorpord soporte para ambas orientaciones de pantalla, vertical y
horizontal, lo que permite que la aplicacion funcione correctamente y mantenga su
estructura y usabilidad sin importar como el usuario sostenga el dispositivo. Esta
flexibilidad es especialmente util en tablets y teléfonos, donde cambiar la orientacion
puede ser comun, garantizando asi una experiencia fluida y sin interrupciones en

cualquier situacion.

Ejemplo de layout adaptable:

83
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Widget build({BuildComtext context) {

body: LayoutBuilder(
builder: (context, constraints) {
return SingleChildScrollview(
padding: const Edgelnsets.all(le),
child: Center(
child: ConstrainedBox|
constraints: const BoxConstraints{maxkidth: e8e),
child: Columni
children: [

const SizedBox(height: 3@),

Image.asset{"lib/img/logo2.png", height: 1es),

const SizedBox(height: 28),

Card(
elevation: &,
shape: RoundedRectangleBorder(borderRadius: Borderfadius.circular{1g)},
child: Padding(

padding: const Edgelnsets.all(id)
child: Form{
key: _formKey,
child: Column(

llustracion 37: muestra la implementacion de herramientas responsive

Beneficios obtenidos

Los beneficios obtenidos en el proyecto son notables en varios aspectos clave. En
primer lugar, se logré una mejora significativa en la experiencia de usuario para
personas con discapacidades visuales o dificultades motrices, gracias a la
implementacion de técnicas de accesibilidad y adaptabilidad que facilitan la
interaccion con la aplicaciéon. Esto no solo hace que la app sea mas inclusiva, sino

que también amplia su potencial alcance y utilidad para un publico mas diverso.

Ademas, la aplicacion se adapta correctamente a diferentes dispositivos y
resoluciones, lo que permite un mayor alcance y una experiencia consistente sin
importar si se utiliza en teléfonos, tablets u otros dispositivos. Esta adaptabilidad
asegura que mas usuarios puedan acceder y utilizar la app de forma comoda y

eficiente, independientemente de las caracteristicas de su dispositivo.

Por ultimo, el uso de estructuras escalables y componentes reutilizables facilita el

mantenimiento y la evolucién del proyecto a largo plazo.

84
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Diseino Metodolodgico: Aplicacion Web y Android para la Gestion de

Citas Médicas utilizando la Metodologia Agil SCRUM Estandar.

Comprobacion

Comprobacion

ﬁ.x ﬂn {ELHL‘.L__.
l]mplemen
tacion | Comprobacion
e
(9
Verificacion
"
E RN
Manteni
miento
%

2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

85

ANEXOS:
Aplicacion web:
Esta es la pagina de inicio donde los usuarios pueden iniciar sesidn o registrarse si

aun no tienen una cuenta.

MedicApp

Tu clinica de confianza para el cuidado de tu salud

Bienvenido a MedicApp, una plataforma moderna para la gestion médica.
Desde aqui podras agendar tus citas médicas de forma rapida y sencilla.

© 2025 - MedicApp - Privacidad

llustracion 38: Muestra la pagina de inicio de la aplicacion web.

En esta imagen se muestra el proceso de registro de un nuevo usuario,

especificamente un paciente.

MedicApp - Registro de Usuario

Crear Cuenta
Nombre: Felix Samir
Apellido: Majia
Edad: 23
DNI: 122-040202-1001V

Namero de Teléfono: 83681960

Correo com
Sexo: Masculino ~

Contrasefia:

llustracion 39: Muestra como se registra un usuario (Paciente) por primera vez.

86
2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

En esta imagen, el usuario ya se ha registrado previamente y esta iniciando sesion

en el sistema.

Bienvenido de nuevo
Correo Electrdnico: femmid4048gmail com
Cnntrﬂseﬁa: FETE T T T T T,

Iniciar Sesién

ENo tienes una cuenta? Registrate agui

llustracion 40: Muestra el inicio sesion del usuario creado

Aca se inici sesion y esta en su perfil

®) medicApp Bienvenido(a), Felix Samir

Perfil

Mombres Apeliidos Sexo Edad
122-040202-1001V Felix Samir Mejia Mendoza Masculine 23

fsmmOA04@gmail.com 83681960

llustracion 41: Muestra la interfaz de inicio de sesion de un usuario (Paciente)
En esta imagen, el usuario esta agendando una cita desde el apartado de citas.
Se puede observar que las horas marcadas en rojo indican los horarios que ya
tienen citas previamente agendadas.

Agendar una Cita Médica

Reserva tu Cita

Médica:

Fecha: 1s/es/2025 @

Hora:

E3 oo D > B vo uw
15:00 17:00

Agendar Cita

llustracion 42: Muestra como se agenda.

87
2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

En esta imagen se muestran las especialidades médicas disponibles para

seleccionar al momento de agendar una cita.

Agendar una Cita Médica

Reserva tu Cita

% Panel de Control

Especialidad Médica: ~Medicina General ~
@ Citas Selecciona una especialidad

Cerrar Sesion Cardiologia
e Ginecologia

0900 oermmtonts woo 00

Pediatria
15:00 16:00 170U

Agendar Cita

© 2025 - MedicApp - Privacidad

llustracion 43: Muestra las opciones de especialidades para agendar cita.

En esta imagen se muestra una cita que ya ha sido agendada. También se puede

ver un botdn que permite acceder a los detalles de la cita.

O
Citas Agendadas

Mend Mis Citas

Fecna 51037075 =

Especialidad: Modicina General
Hora; 08:00 AM

llustracion 44: Muestra que ya se agendo una cita:

Esta imagen corresponde al perfil del administrador, donde puede gestionar y
supervisar las diferentes funciones del sistema.

MeodicApp Bienvenido(a), Administrador
Administrador Admin
Mena Informacion del Perfil

% Panel de Control e Correo Rol

Administrador admin2025@gmail.com Administrador del sistema

¥ Citas Agendadas

Cerrar Sesion

llustracion 45: Muestra el perfil de usuario con rol de administrador.

Esta imagen muestra la lista de pacientes registrados en el sistema, junto con un

botdn para ver los detalles de cada uno.

88
2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

MedicApp

Administrador Admin

Lista de Pacientes

Mena

% Panel de Control

122-040202-1001V Felix Samir 23 i il.eom =
122-050303-2002K Andrea Torres 30 Femenino andrea.t@gmail.com 78562390
122-060606-3003M Mario Jimenez a0 ! com =

© 2025 - MedicApp - Privacidad

as Agendadas

Cerrar Sesion

llustracion 46: Muestra la lista de pacientes registrados en la pagina.

Aqui se visualizan los detalles de un paciente que tiene una cita médica
confirmada.

(%) MedicApp Detalles del Paciente

Administrador Admin
Mend Informacién del Paciente

% Panel de Control DNI Nombre Edad Sexo

122-040202-1001V Felix Samir Mejia 23 Masculino
Pacientes
Doctores Correa Teléfono
fsmm0404@gmail.com 83681960
m Horarios
¥, Especialidades
© Turnos Cita Agendada
B Citas Agendadas Especialidad Docter Asignade Fecha Hora
Cerrar Sesion Medicina General Dr. José Ramirez 15/05/2025 08:00 AM

© 2025 - MedicApp - Privacidad

llustracion 47: Muestra los detalles de la cita de un paciente que tiene agendada una.

En esta imagen se muestran los detalles de un paciente que tiene una cita médica
pendiente de confirmacion.

89
2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

[0 MedicApp

Detalles del Paciente

Administrador Admin

Mend Informacion del Paciente
% Panel de Control oMl Mombre Edad Sexo
122-050303-2002K Andrea Torres 30 Femenino
Pacientes
Bty Correo Teléfono
andrea.t@gmail.com 78562390
w Horarios
", Especialidades
= Turnos Sin Cita Confirmada
¥ Citas Agendadas
Cerrar Sesion @ 2025 - MedicApp - Privacidad

llustracion 48: Muestra los detalles de la cita de un paciente con cita sin agendar o confirmar.

Esta imagen muestra la lista de doctores registrados en el sistema. Desde esta
seccion es posible agregar un nuevo doctor, asi como editar o eliminar sus

horarios y turnos asignados.

MedicApp Listado de Doctores

Administrador Admin

% Panel de Control

Pacientes

Doctores

W Horarios

", Especialidades

© Turnos

B Citas Agendadas

Cerrar Sesién

Dr. José Ramirez
Especialidad: Medicina Genera
Turno: Madana

Horario: 08:00 AM - 12:00 PM

Dra. Ana Rodriguez
Especialidad: Ginecologia
Turno: Tarde

Horario: 02:00 PM - 06:00 PM

Dra. Elena Lopez
Especialidad: Pediatria

D

Dr. Mario Fernandez
Especialidad: Dermatologia
Turno: Mafana

Horario: 09:00 AM - 01:00 PM

Dr. Carlos Soto
Especialidad: Cardiologia
Turno: Mahana

Horario: 08:30 AM - 12:30 PM

llustracion 49: Muestra la lista de doctores con los que se pueden agendar citas.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

90

En esta imagen se muestra el proceso de creacion de un nuevo doctor en el

sistema.

MedicApp

Crear Nuevo Doctor

% Panel de Control

Nombre completo

Pacientes
Dr. Luis Aguilar
Doctores
Especialidad
@ Horarios Pediatria v
¥; Especialidades Turno asignado
Mariana (08:00 - 12:00) >

@ Turnos

-- Selecciona un turno —

B Citas Mariana (08:00 - 12:00)
Tarde (13:00 - 17:00)
Cerrar Sesion

® 2025 - MedicApp - Volver a doctores

llustracion 50: Muestra como se agrega un doctor desde el perfil administrador.

En esta seccidn se muestran las especialidades médicas disponibles. Es posible

crear nuevas especialidades o eliminar las existentes.

SRR Listado de Especialidades Médicas

Administrador Admin
Especialidad Acciones
Menu

Medicina General
% Panel de Control

. Pediatria
Pacientes

Cardiclogia

Doctores
i Horarios Ginecologia Eliminar

" Especialidades Dermatologia

© Turnos

@ 2025 - MedicApp - Privacidad

llustracion 51: Muestra las especialidades que estan disponibles para agendar citas:

91
2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

APLICACION ANDROID

llustracién 52: Pantallas de introduccién a la aplicacion

llustracién 53: seleccién de rol del usuario

2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

92

Iniciar sesién como Director Registro de Director

Correo electrénico —

~ Nombre
Josealb278@gmail.com 1 & Jose Alberto Martinez Gras

~ Contrasefa - - - =
‘ Correo electrénico

josealb278@gmail.com

Recordar usuario

Ingresar Confirmar contrasefia

Camblar rol

&No tienes cuenta? Crea una aqui
@ Registrar Director

llustracion 55: vista de inicio de sesion y registro.

Dashboard del Director

< (2
t
Registrar Nuevo Especialidades de
Doctor los Doctores

@ =

Disponibilidad

Lista de Doctores
Semanal

>

Salir del Perfil

llustracion 54: vista del perfil del director

93
2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

Gestionar Especialidades Lista de Doctores

@ Dr. Ana Pérez >
Especialidad: Cardiologia

Cardiologia
B Dr. Juan Gémez >

Especialidad: Pediatria

Pediatria

a Dr. Laura Diaz >
Especialidad: Cardiologia
Dermatologia] Dr. Mario Torres S
Especialidad: Dermatologia
3 Dr. Carla Ruiz >
Ginecologia Especialidad: Ginecologia
Dr. Luis Martinez >
Especialidad: Neurologia
Neurologia

Dr. Marfa Sanchez
[+] >

Especialidad: Medicina General

Medicina General

llustracion 57:Pantalla de funcién de especialidades llustracion 56: Pantalla de lista de doctores

10310 %0 © U

2 Dr. Mario Torres
Dermatologia
¥, 333-987-6543

Entrada: 6:00 AM Elegir

Disponibilidad semanal

Salida: 3:00 PM Elegir Viernes

15:00 - 18:00

Miércoles O
LJueves O j
“ Viernes O J

Séabado O

Domingo O

Guardar Disponibilidad

. , y) llustracion 58: vista citas registradas
llustracion 59: Pantalla de asignacion de horarios

94

2025: 46/19 jSiempre mas alla avanzamos en la Revolucién!

Conclusion

El desarrollo del sistema integral de gestion de citas médicas ha demostrado la
viabilidad y eficacia de una arquitectura cliente-servidor distribuida que integra
tecnologias modernas tanto en el ambito web como movil. A través del uso de
ASP.NET Core MVC en la parte web, se logré construir un sistema robusto,
escalable y seguro que permite la gestion eficiente de doctores, especialidades y
citas médicas, manteniendo una arquitectura clara mediante el patron Modelo-Vista-
Controlador (MVC) y una correcta persistencia de datos con Entity Framework Core
y MySQL.

En el médulo mévil, desarrollado con Flutter y Dart, se priorizé la experiencia del
usuario final, brindando una aplicacién intuitiva y adaptable que permite a los
pacientes y doctores interactuar faciimente con el sistema. La utilizacion de Firebase
como backend en la nube proporcioné servicios clave como autenticacion, base de
datos en tiempo real (Firestore), notificaciones (Firebase Cloud Messaging) y

almacenamiento, complementando asi la funcionalidad local ofrecida por sqflite.

La integracion entre ambas plataformas mediante APl REST permitié una
comunicacion fluida y segura entre el cliente movil y el servidor web, garantizando
consistencia en los datos y sincronizacion eficiente. Ademas, la implementacion de
control de acceso basado en roles (Paciente, Doctor, Director) contribuyd
significativamente a la seguridad del sistema y a la personalizacion de las

funcionalidades segun el tipo de usuario.

En conjunto, el proyecto no solo ha cumplido con los objetivos planteados al inicio,
sino que también sienta las bases para futuras ampliaciones, tales como la
incorporacion de historiales clinicos mas completos, video consultas, inteligencia
artificial para asignacion de meédicos, y una interfaz de administracion mas
avanzada. De esta manera, se contribuye al mejoramiento de los procesos de

atencion médica y se fortalece la transformacioén digital en el sector salud.

95
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Recomendaciones
Ampliar funcionalidades, considerando la integracion de videollamadas para

consultas remotas y herramientas que faciliten la interaccidn entre paciente y doctor.

Implementar pruebas y monitoreo, mediante herramientas que permitan detectar

fallos, asegurar el rendimiento y facilitar el mantenimiento del sistema.

Desarrollar sesiones de capacitaciéon para los usuarios finales a fin de facilitar la

adopcion del sistema.

Garantizar la escalabilidad del sistema, considerando infraestructuras en la nube de

mayor rendimiento si aumenta el numero de usuarios.

96
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

Referencias bibliograficas:

Duarte Rocha, C. G. (2022). Desarrollo de una aplicacion web de gestion de citas
meédicas y asistencia previa a pacientes llamada “Medicall” en clinicas locales de la
ciudad de Juigalpa-Chontales utilizando la biblioteca React, durante el | semestre
del ano 2022 [Proyecto de graduacion, Universidad Nacional Auténoma de
Nicaragua, @ UNAN-Managua]. Repositorio Institucional =~ UNAN-Managua.
http://repositorio.unan.edu.ni/id/eprint/20269

Lépez Jara, K. S., & Valle Carcamo, K. A. (202). Desarrollo de una aplicacion web
para el control de citas y expediente médico de los pacientes de la cadena de
sucursales de Clinica San Benito [Monografia de licenciatura, Universidad Nacional
de Ingenierial. Repositorio Institucional de la UNI.
https://ribuni.uni.edu.ni/view/creators/Valle_C%3DE 1rcamo%3D3AKeyner_Asiel%
3D3A%3D3A.default.html

Fierro Marifio, J. S., & Rodriguez Espejo, L. M. (2024). Implementacion de un
software para la gestion del historial clinico de un consultorio médico [Trabajo
integrador curricular, Universidad Tecnolégica Ecotec]. Repositorio ECOTEC.
https://repositorio.ecotec.edu.ec/bitstream/123456789/1477/1/FIERRO%20MARI%
C3%910%20JUAN%20STEEVEN%20%26%20RODRIGUEZ%20ESPEJO%20LU
IS%20MATEO.pdf

Revista Médica. (s.f.). Gestion de citas médicas: optimizar el tiempo de los pacientes

y médicos. https://revistamedica.com/gestion-citas-medicas-optimizar-tiempo/

Organizacion Panamericana de la Salud. (s.f.). Sistemas de Informacion para la
Salud (IS4H). Organizacion Panamericana de la Salud.

https://www3.paho.org/ish/index.php/es/

Freeman, A., & Sanderson, P. (2021). Pro ASP.NET Core MVC 2. Apress.
https://doi.org/10.1007/978-1-4842-3191-4

Esposito, D. (2020). Architecting Modern Web Applications with ASP.NET Core
and Microsoft Azure: Add Identity and Security to your App. Microsoft Press.

https://dotnet.microsoft.com

97
2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

http://repositorio.unan.edu.ni/id/eprint/20269
https://ribuni.uni.edu.ni/view/creators/Valle_C%3DE1rcamo%3D3AKeyner_Asiel%3D3A%3D3A.default.html
https://ribuni.uni.edu.ni/view/creators/Valle_C%3DE1rcamo%3D3AKeyner_Asiel%3D3A%3D3A.default.html
https://repositorio.ecotec.edu.ec/bitstream/123456789/1477/1/FIERRO%20MARI%C3%91O%20JUAN%20STEEVEN%20%26%20RODRIGUEZ%20ESPEJO%20LUIS%20MATEO.pdf
https://repositorio.ecotec.edu.ec/bitstream/123456789/1477/1/FIERRO%20MARI%C3%91O%20JUAN%20STEEVEN%20%26%20RODRIGUEZ%20ESPEJO%20LUIS%20MATEO.pdf
https://repositorio.ecotec.edu.ec/bitstream/123456789/1477/1/FIERRO%20MARI%C3%91O%20JUAN%20STEEVEN%20%26%20RODRIGUEZ%20ESPEJO%20LUIS%20MATEO.pdf
https://revistamedica.com/gestion-citas-medicas-optimizar-tiempo/
https://dotnet.microsoft.com/

Rahimi, A., & Reynolds, C. (2021). Entity Framework Core in Action. Manning

Publications.

Date, C. J. (2019). An Introduction to Database Systems (8th ed.). Pearson

Education.

Microsoft Docs. (2025). ASP.NET Core MVC overview.

https://learn.microsoft.com/en-us/aspnet/core/mvc/overview

Microsoft Docs. (2025). Entity Framework Core documentation.

https://learn.microsoft.com/en-us/ef/core/

Microsoft Docs. (2025). ASP.NET Core Web API. https://learn.microsoft.com/en-

us/aspnet/core/web-api/

Google. (2025). Get started with Firebase Authentication on Flutter. Firebase

Documentation. https://firebase.google.com/docs/auth/flutter/start

Martin, R. C. (2018). Clean Architecture: A Craftsman's Guide to Software -

Structure and Design. Prentice Hall.

Sommerville, I. (2020). Software Engineering (10th ed.). Pearson.

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

98

https://learn.microsoft.com/en-us/aspnet/core/mvc/overview
https://learn.microsoft.com/en-us/ef/core/
https://learn.microsoft.com/en-us/aspnet/core/web-api/
https://learn.microsoft.com/en-us/aspnet/core/web-api/

Cronograma de actividades

Mes 1 Mes2 Mes 3 Mes 4 Mes 5
Fase Actividad Duracién | 1 |2 |3 [4 [1 [2 [a [4 [1 [z Ja [4 |17 J2]2 [4]1 [z]3 [4
Estimada SE | SE | 8E | SE | SE SE | SE | SE | SE SE|SE | SE | SE | SE| SE | SE | SE | SE | SE | SE
Investigacionde | 2
antecedentes y semanas
1. Planeacién estudios previos
Creacién del 1
cronograma semanas
detallado
.. Diseno del 3
2. Disefio prototipo inicial semanas
Conceptual del sistema
Configuracion 3
del ent.de semanas
desarrollo
[frameworks y
bases de datos)
Imp. de 3
3. Desarrollo funcionalidades | gamanas
Téecnico principales
[gestion de
citas,
autenticacidn)
Desarrollo de la 2
interfaz maowil semanas
(Android)
Pruebas 2
funcionales y de semanas
4. Pruebas seguridad
Correccidan de 2
EITOres semanas
detectados en
pruebas
Configuracion 1
del sistema en semanas
5. el entorno de
Implementacion pm{lucc.lon
Lanzamiento 1
oficial del semanas
sistema
99

2025: 46/19 jSiempre mas alla avanzamos en la Revolucion!

	falsa portada
	T

