
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

UNIVERSIDAD NACIONAL AUTÓNOMA DE NICARAGUA

UNAN-LEÓN

ÁREA DE CONOCIMIENTO CIENCIAS Y TECNOLOGÍA

ÁREA ESPECÍFICA INGENIERÍA EN SISTEMA DE INFORMACIÓN

 INGENIERÍA EN SISTEMA DE INFORMACIÓN

Desarrollo de una Aplicación Multiplataforma para la Gestión Eficiente de

Citas Médicas.

Tesis para optar al título de Ingeniero en Sistemas de Información

AUTORES:

Br. KATHERINNE JULISSA CASTRO GONZALEZ.

Br. FELIX SAMIR MEJIA MENDOZA.

Br. MARIO RAMON SANCHEZ QUIROZ.

TUTOR:

Licda. DAVINIA ALEJANDRA QUIROZ ROQUE.

León, Nicaragua 13 de junio del 2025

2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

UNIVERSIDAD NACIONAL AUTÓNOMA DE NICARAGUA

UNAN-LEÓN

Área de Conocimiento Ciencias y Tecnología

Área Específica Ingeniería En Sistemas de Información

 INGENIERÍA EN SISTEMA DE INFORMACIÓN

Desarrollo de una Aplicación Multiplataforma para la Gestión

Eficiente de Citas Médicas.

Tesis para optar al título de Ingeniero en Sistema de Información

AUTORES:

BR: KATHERINNE JULISSA CASTRO GONZALEZ

BR: FELIX SAMIR MEJIA MENDOZA

BR: MARIO RAMON SANCHEZ QUIROZ

TUTOR(A):

 Licda. DAVINIA ALEJANDRA QUIROZ ROQUE

León, Nicaragua 13 de junio del 2025

 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Resumen

El presente proyecto desarrolla un sistema integral para la gestión de citas médicas,

combinando una aplicación web construida con ASP.NET Core MVC y una

aplicación móvil desarrollada en Flutter. Ambas plataformas trabajan de forma

conjunta bajo una arquitectura cliente-servidor, permitiendo a pacientes, doctores

y administradores interactuar con el sistema de manera eficiente y segura.

La aplicación web, diseñada para su uso por personal médico y administrativo, sigue

el patrón de diseño Modelo-Vista-Controlador (MVC) y utiliza Entity Framework

Core para la interacción con una base de datos MySQL. Incluye módulos para la

gestión de doctores, especialidades, citas médicas y envío de confirmaciones por

correo electrónico mediante SMTP.

Por otro lado, la aplicación móvil está dirigida principalmente a los pacientes y fue

desarrollada en Flutter, usando Dart como lenguaje de programación. Implementa

servicios de Firebase como backend, incluyendo autenticación, base de datos en

la nube (Cloud Firestore), almacenamiento local con sqflite, y notificaciones con

Firebase Cloud Messaging. El patrón MVVM y la separación de lógica permiten

una arquitectura clara y mantenible.

El sistema permite a los usuarios programar y gestionar citas médicas, visualizar

expedientes, comunicarse con médicos y recibir notificaciones. Los doctores

pueden gestionar sus agendas y editar expedientes, mientras que el director tiene

control administrativo total. La integración entre ambas plataformas se realiza

mediante API REST, garantizando sincronización y escalabilidad.

Este proyecto demuestra la viabilidad técnica de un sistema de salud digital

accesible desde múltiples plataformas, promoviendo la eficiencia en la atención

médica.

 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Dedicatoria

Primeramente, agradezco a Dios, fuente de sabiduría, fortaleza y esperanza, por

haberme guiado en cada etapa de este camino. Sin Su presencia constante, nada

de esto habría sido posible.

A mi madre Johanna González, mi pilar incondicional, gracias por tu amor, tus

sacrificios silenciosos y tu fe en mí incluso cuando yo dudaba. Tu apoyo constante,

tus palabras de aliento y tu ejemplo de perseverancia han sido la base sobre la cual

se construye este logro. Esta meta es tan tuya como mía.

A mi familia y amigos, gracias por estar cerca, por su comprensión en los momentos

difíciles y por compartir conmigo alegrías y desafíos.

A todos quienes, de una forma u otra, contribuyeron con su tiempo, su conocimiento

o su cariño, les estoy profundamente agradecido.

Katherinne González

 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Dedicatoria

Con todo mi amor y gratitud, dedico este logro a tres mujeres fundamentales en mi

vida:

A mi querida mamita Lidia Aguilar, por ser mi refugio, por sus oraciones, su amor

incondicional y por enseñarme con su ejemplo el valor de la perseverancia y la

humildad. Su fortaleza silenciosa ha sido un motor constante en mi camino.

A mi mamá Lisbett, por cada sacrificio, por cada palabra de aliento y por creer en

mí incluso cuando yo misma lo dudaba. Gracias por ser mi apoyo inquebrantable,

por impulsarme a seguir adelante y por sostenerme con su amor en los momentos

difíciles.

A mi tía Jasary, por estar siempre presente con su cariño, consejos y compañía. Su

apoyo ha sido una luz constante a lo largo de esta carrera, y sus palabras han sido

guía en los momentos de incertidumbre.

A ustedes, que con su amor y apoyo han sido el pilar de mis logros, les dedico este

triunfo con todo mi corazón.

Félix Mejía

 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Dedicatoria

Agradezco principalmente a Dios, por haberme dado la vida, la salud y la infinita

sabiduría para iluminar cada paso en este camino. Su presencia ha sido mi

fortaleza, mi refugio y mi fuente de inspiración para seguir adelante.

A mis amados padres, quienes, con su amor incondicional, su sacrificio constante y

su fe inquebrantable en mí, fueron el motor de mis sueños y el pilar fundamental de

mi formación. Esta tesis es un reflejo de su esfuerzo y dedicación.

A mis hermanos, por su alegría, su apoyo incondicional y por los momentos

compartidos que hicieron más ligera la carga.

A mi familia y amigos, por cada palabra de aliento, por su comprensión y por ser la

compañía perfecta en este trayecto. Sin su apoyo, este logro no hubiera sido

posible.

Mario Sánchez

 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Índice
Introducción ... 8

Agradecimiento .. 2

Antecedentes: .. 3

Planteamiento del Problema ... 4

Preguntas de investigación: ... 5

Pregunta general: ... 5

Preguntas específicas: ... 5

Justificación: .. 6

Objetivos: ... 7

Objetivo general: .. 7

Objetivos específicos: .. 7

Marco Teórico: ... 8

Arquitectura y Organización del Sistema ... 8

Patrones de Diseño Utilizados ... 8

Arquitectura General del Sistema .. 9

Patrón MVC en ASP.NET Core Web .. 12

Seguridad y Control de Acceso .. 17

Integración con Módulo Móvil ... 21

Relaciones entre entidades ... 40

Seguridad Web ... 41

Base de Datos Local: Sqflite ... 59

Backend en la Nube: Firebase .. 60

Firebase Firestore para Almacenamiento en la Nube 71

Diseño Metodológico: Aplicación Web y Android para la Gestión de Citas

Médicas utilizando la Metodología Ágil SCRUM Estándar. 85

Anexos …………………………………………………………………………………..86

Conclusión ... 94

Recomendaciones ... 96

Referencias bibliográfica: ... 97

Cronograma de actividades………………………………………………………….99

 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Índice de imágenes

Ilustración 1: Define la estructura de una cita médica con sus propiedades clave

para el almacenamiento de datos. ... 23
Ilustración 2: Muestra la lógica para enviar correos desde Gmail mediante SMTP,

incluyendo servidor, puerto, usuario y contraseña. ... 29
Ilustración 3: Muestra la lógica del controlador EmailService 29
Ilustración 4: Muestra la lógica del appsettings.jsom para conectar con la base de

datos. ... 30
Ilustración 5: Muestra ejemplo de lógica en program.cs para el AppDbContext ... 31
Ilustración 6: Muestra ejemplo de lógica del AppDbContext para conexión entre

modelos. .. 31
Ilustración 7: Muestra ejemplo de la lógica de un modelo paciente. 33
Ilustración 8: Muestra ejemplo de lógica del código AppDbContext...................... 34
Ilustración 9: muestra lógica de configuración en Program.cs 34
Ilustración 10: Muestra cómo hacer una consulta con código SQL. 35
Ilustración 11: Muestra ejemplo de lógica básica de operación CRUD créate. 35
Ilustración 12: Muestra ejemplo de lógica básica de operación CRUD Leer. 36
Ilustración 13: Muestra ejemplo de lógica básica de operación CRUD actualizar. 36
Ilustración 14: Muestra ejemplo de lógica básica de operación CRUD Eliminar. .. 36
Ilustración 15: Muestra lógica de código para la conexión de la base de datos. ... 38
Ilustración 16: Muestra lógica de código completo AppDbContext. 39
Ilustración 17: Muestra pastes de la lógica del AppDbContext 40
Ilustración 18: Muestra las tablas de la base de datos. .. 41
Ilustración 19: Muestra la lógica para trabajar los roles. 42
Ilustración 20: Muestra controlador ASP.NET Core que permite a usuarios con rol

"Doctor" ver expedientes simulados por ID. ... 42
Ilustración 21: Muestra app.UseHttpsRedirection();que redirige las solicitudes

HTTP a HTTPS para proteger la comunicación. .. 43
Ilustración 22: muestra la lógica de validación de roles al iniciar sesión. 44
Ilustración 23: muestra la lógica de autorización de rol basada en firebase 46
Ilustración 24: muestra la lógica para evitar el acceso usuarios no autorizados ... 47
Ilustración 25: muestra la función para cerrar el perfil del usuario 48
Ilustración 26: muestra la lógica de creación y asignación de roles específicos ... 49
Ilustración 27: muestra la lógica de autorización de roles 49
Ilustración 28: muestra la implementación de menú, según la asignación de roles

... 50
Ilustración 29: muestra el registro de los usuarios registrados 50
Ilustración 30: muestra la lógica para consultar datos y redireccionamiento de perfil

al usuario asignado. ... 51
Ilustración 31: muestra la implementación de reglas de acceso 51
Ilustración 32: visualización de la estructura de datos registrados para agendar

citas ... 62

 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 33: muestra la lógica de personalización de estilos aplicados en los

widgets. .. 78
Ilustración 34: muestra la lógica de los formularios utilizados para registrar

usuarios ... 80
Ilustración 35: muestra la lógica para verificar el rol del usuario almacenado en los

registros y redirigirlo a su perfil correspondiente. ... 81
Ilustración 36: muestra la lógica de personalización de textos, colores y controles

accesibles. ... 82
Ilustración 37: muestra la implementación de herramientas responsive 84
Ilustración 38: Muestra la página de inicio de la aplicación web. 86
Ilustración 39: Muestra cómo se registra un usuario (Paciente) por primera vez. . 86
Ilustración 40: Muestra el inicio sesión del usuario creado 87
Ilustración 41: Muestra la interfaz de inicio de sesión de un usuario (Paciente) ... 87
Ilustración 42: Muestra cómo se agenda. ... 87
Ilustración 43: Muestra las opciones de especialidades para agendar cita. 88
Ilustración 44: Muestra que ya se agendo una cita: ... 88
Ilustración 45: Muestra el perfil de usuario con rol de administrador. 88
Ilustración 46: Muestra la lista de pacientes registrados en la página. 89
Ilustración 47: Muestra los detalles de la cita de un paciente que tiene agendada

una. .. 89
Ilustración 48: Muestra los detalles de la cita de un paciente con cita sin agendar o

confirmar. ... 90
Ilustración 49: Muestra la lista de doctores con los que se pueden agendar citas. 90
Ilustración 50: Muestra cómo se agrega un doctor desde el perfil administrador. . 91
Ilustración 51: Muestra las especialidades que están disponibles para agendar

citas: .. 91
Ilustración 52: Pantallas de introducción a la aplicación 92
Ilustración 53: selección de rol del usuario ... 92
Ilustración 54: vista del perfil del director .. 93
Ilustración 55: vista de inicio de sesión y registro. .. 93
Ilustración 57: Pantalla de lista de doctores ... 94
Ilustración 57:Pantalla de función de especialidades ... 94
Ilustración 56: vista citas registradas .. 94
Ilustración 59: Pantalla de asignación de horarios ... 94

1
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Introducción

La gestión eficiente de servicios médicos representa un reto constante en los

sistemas de salud de países en desarrollo como Nicaragua, donde aún prevalece el

uso de métodos tradicionales para la programación de citas. Esta situación genera

ineficiencias administrativas, tiempos de espera prolongados y una experiencia

deficiente para el paciente.

En respuesta a esta problemática, el presente proyecto de tesis propone el

desarrollo de un sistema multiplataforma para la gestión de citas médicas,

compuesto por una aplicación web implementada con ASP.NET Core MVC y una

aplicación móvil desarrollada en Flutter. Ambas plataformas se comunican mediante

servicios REST y emplean Firebase como backend para autenticación,

almacenamiento en la nube, notificaciones y sincronización de datos.

El objetivo principal es optimizar el proceso de agendamiento y seguimiento de citas,

mejorar la comunicación entre los distintos roles del sistema (paciente, doctor y

director) y reducir la carga operativa en los centros de salud. Esta solución

tecnológica busca aportar una herramienta escalable, moderna y adaptada al

contexto local, contribuyendo a la transformación digital del sector salud en

Nicaragua.

2
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Agradecimiento

Dedicamos este proyecto a nuestras familias, quienes han sido nuestro pilar

fundamental durante todo este proceso académico. Su apoyo incondicional,

comprensión y palabras de aliento han sido claves para alcanzar esta meta.

Agradecemos también a nuestros docentes y asesores, por guiarnos con

compromiso, paciencia y dedicación, y por contribuir significativamente a nuestro

crecimiento profesional y personal.

Asimismo, dedicamos este trabajo a todas las personas que creen en el poder de la

tecnología para transformar realidades y mejorar la calidad de vida. Este proyecto

es una muestra de nuestro esfuerzo conjunto, con la convicción de aportar

soluciones útiles a la sociedad.

3
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Antecedentes:

En Nicaragua, la transformación digital ha comenzado a impactar diversos sectores,

incluida la salud. La necesidad creciente de optimizar el acceso, la eficiencia y la

calidad de los servicios médicos ha impulsado el desarrollo de soluciones digitales

orientadas a modernizar procesos tradicionales, como la gestión de citas médicas.

En este contexto, instituciones educativas han apostado por la integración de la

tecnología en propuestas innovadoras que abordan problemas reales del entorno.

Estas iniciativas no solo fortalecen la formación profesional, sino que también

contribuyen al desarrollo de herramientas útiles para la sociedad.

Uno de estos proyectos es la aplicación web “Medicall”, desarrollada en Juigalpa

utilizando React, Redux y Firebase, bajo la metodología ágil SCRUM. Diseñada

para facilitar la gestión de citas médicas y consultas en línea, Medicall busca reducir

la automedicación, evitar aglomeraciones y modernizar la atención primaria.

Presentado en el documento institucional de la UNAN-Managua (2020) por

estudiantes de la Dirección de Docencia de Grado, este proyecto forma parte de

una propuesta pedagógica que promueve la formación integral, el pensamiento

crítico, la responsabilidad social y el compromiso con el desarrollo humano

sostenible.

Paralelamente, en la Universidad Nacional de Ingeniería (UNI-Managua), se

desarrolló en 2021 un sistema web para la gestión de citas y expedientes médicos

en la red de sucursales de la Clínica San Benito. Implementado con PHP, MySQL,

HTML5 y Bootstrap, bajo el modelo de desarrollo en cascada, su principal aporte

fue la automatización de procesos que anteriormente se realizaban manualmente,

reduciendo tiempos de espera y mejorando la continuidad de la atención médica.

4
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Planteamiento del Problema

En Nicaragua, una parte significativa de los centros de salud aún utiliza métodos

tradicionales para la programación de citas médicas, como listas manuales,

llamadas telefónicas y atención presencial directa. Esta situación ha generado

diversas problemáticas que afectan tanto la eficiencia del sistema de salud como la

calidad del servicio brindado a los pacientes.

Entre los principales inconvenientes se encuentran los largos tiempos de espera, la

saturación de las instalaciones médicas, el ausentismo por falta de recordatorios, y

la desorganización en la gestión de turnos. Estas dificultades no solo repercuten en

la experiencia del paciente, sino que también afectan la planificación interna de los

centros médicos y limitan el aprovechamiento óptimo de los recursos disponibles.

A pesar de que existen avances internacionales en la digitalización de estos

procesos, en Nicaragua aún es limitado el uso de soluciones tecnológicas que

permitan automatizar y optimizar la gestión de citas médicas. Esto evidencia una

brecha importante entre las necesidades reales del sistema de salud y la oferta

tecnológica existente.

Ante este panorama, surge la necesidad de desarrollar una herramienta digital

accesible, intuitiva y eficiente que permita transformar la manera en que se

organizan las citas médicas. Tal solución debe responder a las condiciones

tecnológicas del país y atender tanto a los pacientes como al personal médico y

administrativo.

5
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Preguntas de investigación:

Pregunta general:

¿Cómo puede una aplicación multiplataforma optimizar la gestión de citas médicas,

para facilitar la interacción con los usuarios, reducir el ausentismo y garantizar una

arquitectura técnica eficiente?

Preguntas específicas:

• ¿Qué características debe tener una interfaz de usuario para ser considerada

intuitiva y adaptable tanto en web como en dispositivos móviles?

• ¿Qué tipo de notificaciones (SMS, correo electrónico) resultaría más efectivo

para recordar las citas médicas a los pacientes?

• ¿Cuáles serían los beneficios técnicos y funcionales de centralizar la lógica

del sistema en una API para una aplicación de citas médicas?

6
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Justificación:

El acceso oportuno y eficiente a los servicios de salud en Nicaragua continúa siendo

un desafío, particularmente en aquellos centros médicos que aún dependen de

métodos manuales para la programación de citas. Estas limitaciones generan

problemas recurrentes como largas filas, demoras en la atención, desorganización

administrativa y pérdida de información clínica relevante.

Considerando este panorama se genera la oportunidad de mejorar con el siguiente

proyecto propone el desarrollo de una aplicación multiplataforma (web y Android)

que permita gestionar de forma eficiente el proceso de agendamiento de citas

médicas. Esta solución digital busca mejorar la experiencia del paciente, fortalecer

la operatividad de los centros de salud y reducir la carga de trabajo administrativo.

La implementación de este sistema permitirá automatizar procesos, centralizar la

información y brindar notificaciones en tiempo real, contribuyendo a la

modernización de los servicios médicos. Además, al integrar tecnologías accesibles

y adaptadas al entorno local, se promueve la inclusión digital en el sector salud.

Este proyecto responde no solo a una necesidad tecnológica concreta, sino también

al compromiso académico con el desarrollo de soluciones innovadoras orientadas

al bienestar social. Su ejecución fortalecerá las competencias profesionales de los

autores, promoverá el uso de tecnologías emergentes y aportará una herramienta

útil y escalable para el sistema sanitario nicaragüense.

El proyecto tiene un impacto significativo tanto en la experiencia del paciente como

en la gestión médica. Para los pacientes, mejora al reducir tiempos de espera,

eliminar filas innecesarias, facilitar la gestión de citas y disminuir el ausentismo

mediante recordatorios automatizados. En cuanto a la gestión médica, optimiza la

organización interna con una agenda digital actualizada, reduce la carga

administrativa del personal y mejora la eficiencia en la asignación de turnos,

evitando conflictos de disponibilidad.

7
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Objetivos:

Objetivo general:

Desarrollar una aplicación multiplataforma que permita gestionar de manera eficaz

el proceso de agendamiento de citas médicas.

Objetivos específicos:

1. Diseñar una interfaz de usuario intuitiva y adaptable que permita a pacientes

y personal médico interactuar fácilmente con la plataforma, tanto en su

versión web como móvil.

2. Implementar un sistema automatizado de notificaciones y recordatorios para

disminuir el ausentismo de pacientes y mejorar la eficiencia del servicio

médico.

3. Desarrollar una API RESTful que centralice la lógica del sistema y permita la

comunicación eficiente entre la base de datos y las interfaces de usuario.

8
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Marco Teórico:

Arquitectura y Organización del Sistema

Este proyecto está basado en una arquitectura cliente-servidor moderna, donde la

interacción entre el frontend (aplicaciones web y móvil) y el backend (servidores y

servicios en la nube) se realiza de manera eficiente a través de APIs REST y

servicios de Firebase.

Patrones de Diseño Utilizados

Web – MVC (Modelo-Vista-Controlador):

o Separa claramente la lógica de negocio, la presentación y el acceso a

datos.

o Mejora la organización del código y facilita el mantenimiento y

escalabilidad.

Móvil – MVVM (Modelo-Vista-ViewModel) y separación de responsabilidades:

o En Flutter se promueve la división de UI, lógica de presentación.

o Se aplican técnicas como Provider o Riverpod para la gestión de

estado.

 Flujo General de Información

1. Paciente móvil:

o Inicia sesión con Firebase Authentication.

o Realiza una cita, que se almacena en Firestore.

o Recibe notificaciones push mediante FCM.

o Puede enviar mensajes al doctor y consultar su expediente médico.

2. Doctor móvil:

o Visualiza sus citas mediante Firestore.

o Modifica citas; los cambios se sincronizan en tiempo real.

o Accede y edita expedientes clínicos de sus pacientes.

9
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

3. Director móvil:

o Administra doctores, horarios y especialidades desde su app.

o Tiene acceso completo a la base de datos del sistema.

4. Sistema Web (ASP.NET Core):

o Administra todos los datos del sistema (citas, doctores,

especialidades).

o Se conecta con MySQL a través de Entity Framework Core.

o Envía confirmaciones de cita por correo mediante SMTP.

o Expone APIs REST para consultas desde aplicaciones móviles si se

requiere sincronización cruzada.

Comunicación entre Aplicaciones y Servicios

API REST (Web):

La parte web de la aplicación ya expone endpoints RESTful que permiten

compartir datos estructurados con otros módulos del sistema, facilitando, por

ejemplo, la sincronización cruzada de información entre diferentes

componentes. Para lograrlo, se utilizó ASP.NET Core, lo que permitió

desarrollar APIs robustas y seguras de manera eficiente. Gracias a esta

tecnología, se implementaron mecanismos de autenticación, enrutamiento y

manejo de solicitudes que garantizan un intercambio de datos confiable y

escalable, asegurando una integración fluida dentro del ecosistema de la

aplicación.

Firebase Services (Móvil):

o Firestore actúa como base de datos en tiempo real para la app móvil.

o FCM permite la mensajería push entre servidor y dispositivos.

o Authentication gestiona el acceso seguro de los usuarios.

Arquitectura General del Sistema

 Arquitectura cliente-servidor: Web (ASP.NET Core) + Móvil (Flutter) + Backend en

la nube (Firebase).

10
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

La arquitectura cliente-servidor es un modelo ampliamente adoptado en el

desarrollo de sistemas distribuidos, donde los clientes solicitan servicios o recursos,

y un servidor central los procesa y responde. En el presente proyecto, se ha

implementado una arquitectura cliente-servidor híbrida que integra aplicaciones web

y móviles, junto con servicios en la nube para el almacenamiento y gestión de datos.

Componentes de la arquitectura

Cliente Web (ASP.NET Core MVC)

El cliente web está desarrollado utilizando el framework ASP.NET Core MVC, que

sigue el patrón Modelo-Vista-Controlador. Esta capa permite a usuarios con perfil

administrativo (por ejemplo, directores médicos) gestionar el sistema desde una

interfaz accesible vía navegador. Las vistas están construidas con Razor Pages, y

los controladores manejan la lógica de negocio y las interacciones con la base de

datos mediante Entity Framework Core.

 Cliente Móvil (Flutter + Dart)

La aplicación móvil está construida con Flutter, un framework multiplataforma que

utiliza el lenguaje Dart. Esta aplicación está orientada a pacientes y doctores,

permitiendo funcionalidades como agendamiento de citas, consultas de expediente

médico, mensajería directa y recepción de notificaciones. Flutter permite una

experiencia de usuario fluida y nativa tanto en Android como en iOS.

11
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

 Backend en la Nube (Firebase)

Firebase actúa como backend en la nube y provee diversos

servicios esenciales para la aplicación móvil:

Firebase Authentication: Manejo de autenticación de

usuarios mediante correo, Google, entre otros.

Cloud Firestore: Base de datos NoSQL en tiempo real, donde

se almacenan citas, mensajes, historiales y otra información

relevante.

Firebase Cloud Messaging (FCM): Servicio de notificaciones

push que permite enviar alertas instantáneas sobre cambios en

citas o mensajes nuevos.

Firebase Storage: Almacenamiento de archivos, útil para

resguardar informes médicos o imágenes relacionadas al

expediente del paciente.

Interacción entre componentes

La comunicación entre las aplicaciones cliente (web y móvil) y el backend se realiza

mediante API RESTful. ASP.NET Core expone servicios web que permiten a la

aplicación móvil acceder o modificar información almacenada en la base de datos

MySQL del servidor. Paralelamente, la aplicación móvil interactúa con Firebase para

operaciones que requieren sincronización en tiempo real o almacenamiento

temporal.

Este enfoque dual permite aprovechar lo mejor de ambos mundos: una base de

datos relacional robusta (MySQL) para procesos administrativos, y una plataforma

flexible en la nube (Firebase) para mejorar la experiencia del usuario móvil,

especialmente en aspectos como tiempo real, notificaciones y accesibilidad desde

cualquier lugar.

12
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Patrones de diseño utilizados (MVC en Web, MVVM y separación de

lógica en Flutter)

Los patrones de diseño son esquemas reutilizables de arquitectura que permiten

organizar el código de manera eficiente, facilitar el mantenimiento y fomentar la

escalabilidad de las aplicaciones. En este proyecto se han implementado

diferentes patrones de diseño tanto en el desarrollo web como en el desarrollo

móvil, adaptados a las características específicas de cada entorno tecnológico.

Patrón MVC en ASP.NET Core Web

El patrón Modelo-Vista-Controlador (MVC) es el núcleo del desarrollo de

aplicaciones web con ASP.NET Core. Este patrón promueve la separación de

responsabilidades en tres componentes principales:

• Modelo: Representa la lógica de acceso a datos y las estructuras del

negocio. En este caso, se definen entidades como Cita, Doctor, Especialidad,

entre otras, que se gestionan mediante Entity Framework Core y se persisten

en una base de datos MySQL.

• Vista: Define la presentación de la información al usuario. Utiliza Razor

Pages para generar contenido HTML dinámico basado en los datos del

modelo.

• Controlador: Actúa como intermediario entre el modelo y la vista. Recibe las

solicitudes del usuario, procesa la lógica y determina qué vista debe

mostrarse.

Este patrón facilita la organización del código, la reutilización de

componentes y una interfaz limpia para los usuarios administradores y

directores del sistema.

Patrón MVVM y Separación de Lógica en Flutter

En el desarrollo móvil con Flutter se ha adoptado el enfoque del patrón MVVM

(Modelo-Vista-ViewModel) de forma adaptada, combinando buenas prácticas de

arquitectura limpia y separación de responsabilidades para mantener un código

modular y mantenible.

13
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

• Modelo: Define las clases de datos, como usuarios, citas o mensajes. Estas

clases son utilizadas por otras capas de la aplicación.

• Vista: Está compuesta por los widgets de Flutter, que representan la interfaz

gráfica del usuario (UI). Estas vistas son reactivas y responden a cambios en

el estado del ViewModel.

• ViewModel: Encapsula la lógica de presentación, contiene los controladores

y los estados necesarios para que la vista funcione correctamente. Interactúa

con los modelos para obtener o modificar datos y notifica a la vista de los

cambios mediante mecanismos de notificación como ChangeNotifier.

Además del MVVM, se aplica una arquitectura limpia al dividir el código en

capas como:

• Servicios: Encargados de interactuar con Firebase o con APIs externas (por

ejemplo, llamadas HTTP al backend ASP.NET).

• Repositorios: Que abstraen el origen de los datos (pueden provenir de

Firebase, SQLite o memoria).

• Controladores o Providers: Que manejan el estado de la aplicación usando

librerías como provider, riverpod o bloc.

Esta separación permite testear de forma independiente cada componente, facilita

la extensión de funcionalidades, y promueve un desarrollo basado en principios

SOLID.

Flujo general de información entre frontend, backend y base de

datos

El flujo de información en una aplicación cliente-servidor moderna es fundamental

para garantizar la coherencia de los datos, la interacción fluida del usuario y la

seguridad de los procesos. En este proyecto, el flujo de datos se organiza en función

de dos canales principales de interacción: la plataforma web (ASP.NET Core MVC)

y la aplicación móvil (Flutter), ambas comunicándose con un backend y distintas

bases de datos (MySQL y Firebase).

14
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Flujo en la Plataforma Web (ASP.NET Core MVC)

El flujo de información para la plataforma web sigue una arquitectura tradicional

cliente-servidor con persistencia de datos relacional:

Interacción del Usuario: El usuario accede a través de un navegador y realiza

acciones como crear una cita o registrar un doctor.

Petición HTTP: Las acciones del usuario son enviadas como solicitudes HTTP

(GET, POST, PUT, DELETE) a los controladores de ASP.NET Core.

Lógica de Controlador: El controlador procesa la petición, valida los datos y se

comunica con el modelo correspondiente.

Acceso a Datos: A través de Entity Framework Core, el modelo accede o modifica

la base de datos MySQL utilizando DbContext.

Respuesta: El controlador retorna una vista (HTML dinámico) con los datos

actualizados, que se muestran en el navegador del usuario.

Este flujo es síncrono y centrado en el modelo relacional, ideal para operaciones

administrativas y gestión estructurada de datos.

Flujo en la Aplicación Móvil (Flutter + Firebase)

El flujo de información en la app móvil es más flexible y orientado a servicios en la

nube y sincronización en tiempo real:

Inicio de Sesión: El usuario inicia sesión mediante Firebase Authentication.

Interacción del Usuario: El paciente o doctor navega por la app, visualiza

información, agenda citas.

Servicios y ViewModel: La capa lógica en Flutter (ViewModel o provider) interpreta

las acciones del usuario y llama a los servicios correspondientes.

Comunicación con Firebase:

1. Cloud Firestore: Se consulta, crea o actualiza información médica o de citas.

2. Cloud Messaging: Se envían notificaciones push cuando se modifica una cita.

15
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

3. Firebase Storage: Se suben o descargan documentos médicos, si aplica.

Respuesta en Tiempo Real: Firebase responde automáticamente a los cambios

con flujos reactivos, actualizando la interfaz del usuario sin necesidad de recargar

manualmente.

Este flujo permite experiencias reactivas y asincrónicas, ideales para usuarios que

requieren movilidad y notificaciones inmediatas.

 Flujo Híbrido: Comunicación con API REST

Algunas de las operaciones clave de la aplicación móvil requieren acceso a datos

que residen exclusivamente en el backend del sistema web, como la verificación de

la disponibilidad de doctores, la gestión de horarios o la sincronización de citas

médicas con una base de datos relacional. Para satisfacer estos requerimientos, la

app desarrollada en Flutter establece comunicación con el backend mediante

peticiones HTTP dirigidas a servicios RESTful implementados en ASP.NET Core.

Cada solicitud enviada desde Flutter es procesada por controladores definidos en

el backend, los cuales interactúan con la base de datos MySQL utilizando Entity

Framework Core como ORM (Object-Relational Mapping). Esta arquitectura permite

que el backend consulte, procese y estructure la información necesaria,

devolviéndola en formato JSON para que Flutter pueda interpretarla y presentarla

adecuadamente al usuario final. Este flujo de datos, que combina la interfaz móvil

con un backend robusto y centralizado, permite mantener una lógica de negocio

coherente y segura, mientras se aprovechan los beneficios de la computación en la

nube, como la escalabilidad, el acceso en tiempo real y la integración

multiplataforma. Además, este enfoque facilita el mantenimiento y la evolución del

sistema, ya que la lógica crítica permanece en el backend, reduciendo la

complejidad en el cliente móvil.

16
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Diagrama Resumido del Flujo de Información

El diagrama representa el flujo de información entre la app web y móvil, donde ambas acceden a

MySQL mediante ASP.NET Core, y la app Flutter también intercambia datos con servicios Firebase.

Comunicación entre aplicaciones mediante API REST y servicios Firebase

El presente proyecto contempla un enfoque multiplataforma en el que coexisten una

aplicación web desarrollada con ASP.NET Core MVC y una aplicación móvil

construida con Flutter. La sincronización entre ambas plataformas se logra a través

de dos mecanismos clave: API RESTful para la interacción directa con el backend

y servicios de Firebase para funcionalidades en tiempo real, autenticación y

persistencia en la nube.

 Comunicación mediante API REST (Web ↔ Móvil)

La API REST actúa como un puente entre el frontend móvil y el backend web,

permitiendo que Flutter consuma servicios expuestos por el servidor ASP.NET Core.

 Estructura de la API REST

Se define en el backend web con controladores específicos ([ApiController]) que

reciben solicitudes HTTP (GET, POST, PUT, DELETE).

móvil web

17
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Las rutas están organizadas por recursos, por ejemplo:

/api/citas – para gestionar las citas.

/api/doctores – para obtener la lista de doctores disponibles.

/api/especialidades – para consultar especialidades médicas.

Flujo de comunicación

El usuario en la app móvil ejecuta una acción (crear cita, consultar doctores, etc.).

Flutter envía una solicitud HTTP al backend usando http, dio o alguna librería similar.

ASP.NET Core procesa la solicitud, accede a la base de datos MySQL mediante

Entity Framework Core y responde con un objeto JSON.

Flutter recibe y deserializa la respuesta para presentarla en la interfaz.

Seguridad y Control de Acceso

Para proteger la comunicación:

Se utiliza autenticación basada en tokens (JWT o Firebase ID Token).

Se implementan políticas de autorización en el backend para restringir el acceso a

usuarios no autorizados.

Comunicación mediante Servicios Firebase

Firebase proporciona una suite de herramientas que simplifican el desarrollo móvil.

En este proyecto, se han implementado los siguientes servicios:

Firebase Authentication

Permite a los pacientes y doctores autenticarse mediante correo electrónico y

contraseña.

Gestiona sesiones de forma segura y persistente.

 Los tokens de sesión pueden ser reutilizados para autenticación en peticiones a la

API REST.

18
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Cloud Firestore

Base de datos NoSQL en tiempo real para almacenar datos dinámicos como

mensajes, historial de citas y notificaciones. Ofrece sincronización automática entre

múltiples dispositivos.

 Cloud Messaging (FCM)

Utilizado para el envío de notificaciones push.

Se informa al paciente cuando su cita ha sido modificada, confirmada o cancelada.

También puede notificar al doctor sobre nuevas consultas.

Firebase Storage

Permite almacenar archivos como resultados de laboratorio o documentos clínicos

asociados al expediente del paciente.

Los archivos pueden ser accedidos desde la app móvil por usuarios autenticados.

 Integración Coordinada

La combinación de API REST y Firebase permite una arquitectura híbrida en la

que:

La lógica centralizada del sistema (validaciones complejas o integridad de datos)

se maneja desde el backend ASP.NET Core.

La experiencia del usuario móvil (como notificaciones, autenticación y datos en

tiempo real) se gestiona con Firebase para maximizar la velocidad y respuesta

inmediata. Esto permite escalar el sistema fácilmente, mantener una experiencia

unificada entre plataformas y reutilizar servicios comunes.

Desarrollo del Módulo Web (ASP.NET Core MVC)

El módulo web del sistema fue construido utilizando ASP.NET Core MVC, un

framework moderno y multiplataforma que permite desarrollar aplicaciones web

robustas, escalables y bien estructuradas mediante el patrón arquitectónico

Modelo-Vista-Controlador (MVC). Este enfoque garantiza una clara separación de

responsabilidades, facilita el mantenimiento del código y permite una escalabilidad

eficiente.

19
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Estructura General del Proyecto

El sistema web se encuentra dividido en múltiples áreas funcionales, cada una

controlada por su respectivo controlador y modelo. Esta estructura promueve el

modularidad, el desacoplamiento del código y la reutilización de componentes.

Componentes principales:

• Modelos: Representan las entidades del dominio (Cita, Doctor, Especialidad,

Usuario).

• Vistas: Plantillas Razor que permiten generar interfaces dinámicas.

• Controladores: Gestionan las peticiones HTTP y vinculan los modelos con las

vistas.

 Controlador Cita

Responsable de gestionar todo lo relacionado con las citas médicas:

• Crear nuevas citas.

• Listar, editar y cancelar citas.

• Validaciones de disponibilidad por fecha, hora y especialidad.

• Comunicación con el modelo Cita y su correspondiente vista para mostrar

información dinámica.

Controlador Doctor

Administra la información del personal médico:

• Alta, modificación y baja de doctores.

• Consulta de información detallada: nombre, especialidad, horario laboral.

• Enlace con la vista para mostrar los datos a los usuarios y administradores.

 Controlador Especialidad

Permite mantener actualizadas las especialidades médicas que se ofrecen:

20
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

• Gestión CRUD de especialidades.

• Uso de este controlador como filtro previo a la asignación de un doctor.

• Integración con el modelo Especialidad y sus vistas asociad

Controlador ConfirmaciónCita

Su principal propósito es la notificación por correo electrónico al paciente cuando

una cita es creada o modificada.

• Integración con un servidor SMTP para el envío de correos automáticos.

• Generación dinámica del contenido del correo (fecha, hora, doctor,

especialidad).

• Facilita la comunicación entre el sistema y el paciente.

 Conexión a la Base de Datos

Se utilizó Entity Framework Core como ORM para facilitar la interacción con

MySQL. Todas las operaciones de persistencia se gestionan mediante el contexto

AppDbContext, el cual contiene los DbSet correspondientes a cada entidad del

sistema.

Ventajas del uso de EF Core:

• Permite consultas LINQ para facilitar el manejo de datos.

• Automatiza la creación de tablas y relaciones mediante migraciones.

• Abstracción de SQL puro, mejorando la productividad y seguridad del

desarrollador.

Seguridad y Gestión de Accesos

El sistema web contempla distintos niveles de usuario:

• Pacientes: Acceso limitado a creación y consulta de citas.

• Doctores: Visualización y edición del expediente del paciente.

• Administrador (Director): Acceso completo a la gestión del sistema.

21
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Se implementan mecanismos de autenticación y autorización basados en roles para

restringir el acceso a funcionalidades críticas.

Integración con Módulo Móvil

El módulo web también actúa como backend para la aplicación móvil, sirviendo

datos mediante una API REST que expone los controladores necesarios. De esta

manera, los datos se mantienen sincronizados entre la plataforma web y móvil.

Estructura del Proyecto Web

Organización General del Proyecto

El proyecto está organizado en las siguientes carpetas principales:

• Controllers

Contiene los controladores que manejan las solicitudes HTTP, procesan la lógica

de negocio y devuelven respuestas a las vistas o a la API.

• Models

Incluye las clases que representan las entidades del dominio (como Cita, Doctor,

Especialidad, Usuario). Estas clases también definen las relaciones entre las

entidades y son utilizadas por Entity Framework Core para mapear a la base de

datos.

• Views

Carpeta que contiene las plantillas de interfaz de usuario escritas con Razor.

Está subdividida por controlador, lo que permite mantener organizada la

representación visual del sistema.

• Data

Contiene la clase AppDbContext, la cual representa el contexto de la base de

datos y se utiliza para interactuar con MySQL a través de Entity Framework Core.

• wwwroot

Almacena archivos estáticos como CSS, JavaScript, imágenes y bibliotecas de

frontend utilizadas por la aplicación.

22
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

• Migrations

Carpeta que almacena los archivos generados por las migraciones de Entity

Framework Core para la gestión de cambios en el esquema de base de datos.

• appsettings. json

Archivo de configuración donde se especifican parámetros del sistema, como

la cadena de conexión a MySQL, configuración de correo SMTP, entre otros.

Controladores Principales:

• CitaController:

Gestiona la creación, edición, eliminación y visualización de citas médicas.

• DoctorController:

Administra los datos de los doctores, incluyendo horarios y especialidades.

• EspecialidadController:

Permite la gestión de las especialidades médicas registradas en el sistema.

• ConfirmacionCitaController:

Encargado de generar y enviar correos electrónicos al paciente cuando una cita

es confirmada o modificada.

Modelo de Datos (Entity Framework Core)

Las entidades están representadas como clases con propiedades que se traducen

directamente a tablas y columnas en MySQL. Por ejemplo:

23
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 1: Define la estructura de una cita médica con sus propiedades clave para el almacenamiento de
datos.

Flujo de Trabajo MVC

1. El usuario realiza una solicitud en el navegador (por ejemplo, crea una cita).

2. El controlador correspondiente recibe la solicitud y procesa la lógica de negocio.

3. El modelo se comunica con la base de datos para recuperar o almacenar

información.

4. Los resultados se devuelven a una vista, que se encarga de renderizar la

respuesta HTML y presentarla al usuario.

Modelo-Vista-Controlador (MVC)

El patrón Modelo-Vista-Controlador (MVC) es un enfoque arquitectónico

ampliamente utilizado en el desarrollo de aplicaciones web, y ha sido implementado

24
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

en este proyecto mediante el framework ASP.NET Core MVC. Este patrón

promueve la separación de responsabilidades, permitiendo una mejor organización

del código, una mayor mantenibilidad y facilidad para futuras expansiones o

integraciones.

 Descripción del Patrón MVC

El patrón MVC divide una aplicación en tres componentes principales:

• Modelo (Model)

Representa los datos y la lógica. En este proyecto, los modelos son clases que

definen las entidades principales del sistema como Cita, Doctor, Paciente, y

Especialidad. También se conectan con la base de datos mediante Entity

Framework Core.

• Vista (View)

Es la parte de la aplicación encargada de la presentación visual al usuario. Las

vistas en ASP.NET Core se construyen con Razor, una sintaxis que combina

HTML con C#. Cada vista está asociada a una acción del controlador y permite

mostrar datos dinámicos que provienen del modelo.

• Controlador (Controller)

Maneja las solicitudes del usuario, procesa la lógica de la aplicación y devuelve

una respuesta. Los controladores actúan como intermediarios entre los

modelos y las vistas. Cada controlador en el sistema (como CitaController,

DoctorController, etc.) contiene métodos que responden a acciones

específicas como crear, editar o eliminar datos.

 Aplicación del MVC en el Proyecto

Ejemplo aplicado al flujo de gestión de una cita médica:

25
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Vista: El usuario llena un formulario para agendar una cita.

Controlador: El método Create del CitaController recibe los datos, valida la

información y llama al modelo.

Modelo: El objeto Cita es guardado en la base de datos mediante el contexto

AppDbContext.

Controlador: Devuelve una vista de confirmación.

Vista: Se muestra al usuario una página que confirma la creación exitosa de la cita.

Este flujo garantiza que cada capa tenga una única responsabilidad, reduciendo la

complejidad del sistema y facilitando la depuración o ampliación de este.

La implementación del patrón Modelo-Vista-Controlador (MVC) en el módulo web

garantiza una base sólida para el desarrollo estructurado de funcionalidades. Su

adopción no solo mejora la claridad del proyecto, sino que también permite un

desarrollo colaborativo más efectivo y una integración más ordenada con otros

módulos como el sistema móvil.

Organización de Controladores: Cita, Doctor, Especialidad,

Confirmación

El sistema está estructurado alrededor de cuatro controladores fundamentales que

se alinean con las entidades principales del dominio médico:

CitaController

La responsabilidad principal del puesto consiste en administrar todos los aspectos

relacionados con la gestión de citas médicas. Entre sus funciones clave se

encuentran la creación de nuevas citas, la edición o reprogramación de citas ya

existentes, la eliminación de citas cuando sea necesario y la organización de las

citas programadas, ya sea por paciente o por fecha, con el fin de mantener un

control ordenado y eficiente del calendario médico.

26
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Relación con otros componentes:

Además, esta función hace uso del modelo Cita para gestionar la información

relacionada con cada reserva médica. Interactúa directamente con los modelos

Doctor y Paciente, lo cual permite validar la disponibilidad de los profesionales de

la salud y asegurar la correcta asignación de las citas. Asimismo, está integrada

con las vistas del sistema, tales como Create.cshtml, Edit.cshtml e Index.cshtml,

facilitando la creación, edición y visualización de las citas desde la interfaz del

usuario.

DoctorController

La responsabilidad principal de este rol es gestionar la información del personal

médico. Entre sus funciones clave se incluyen el registro de nuevos doctores en el

sistema, la edición de su información personal y profesional, como nombre,

especialidad y horario de atención, así como la eliminación de aquellos doctores

que se encuentren inactivos. Además, permite visualizar la lista completa de

doctores registrados y acceder a los detalles individuales de cada uno para una

administración más eficiente y actualizada del equipo médico.

Relación con otros componentes:

Este componente utiliza el modelo Doctor como base para gestionar la información

del personal médico y se vincula con el modelo Especialidad, permitiendo asignar

una o varias especialidades a cada doctor según su formación y experiencia.

Además, se conecta con diversas vistas del sistema, como Details.cshtml,

Create.cshtml y Edit.cshtml, lo que facilita la visualización de información detallada,

así como la creación y edición de registros médicos desde la interfaz del usuario.

EspecialidadController

La responsabilidad principal de este componente es administrar las especialidades

médicas disponibles en el sistema. Sus funciones clave incluyen la creación y

registro de nuevas especialidades, la edición de sus nombres o descripciones para

mantener la información actualizada, la eliminación de aquellas especialidades que

ya no se utilicen, y la visualización de todas las especialidades disponibles, lo cual

27
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

facilita su correcta asignación al personal médico y mejora la organización del

sistema de salud.

Relación con otros componentes:

Este componente mantiene una relación directa con el modelo Doctor, permitiendo

clasificar a los médicos según su área médica correspondiente. Gracias a esta

relación, es posible asignar una o varias especialidades a cada doctor, lo que mejora

la organización y búsqueda de profesionales según sus competencias. Además, se

apoya en vistas asociadas, como formularios y listados, que facilitan la gestión

visual de las especialidades dentro del sistema.

ConfirmacionCitaController

El ConfirmacionCitaController tiene como responsabilidad principal enviar

confirmaciones automáticas de citas médicas por correo electrónico al paciente.

Entre sus funciones clave se encuentra la generación de correos electrónicos que

incluyen los datos relevantes de la cita, como la fecha, la hora, el doctor asignado y

la especialidad correspondiente. Utiliza la configuración SMTP para realizar el envío

automático de estos mensajes, y se encarga de asegurar que las notificaciones

sean enviadas correctamente tanto al momento de crear una cita como cuando esta

es modificada, garantizando así una comunicación oportuna y eficiente con el

paciente.

Relación con otros componentes:

El ConfirmacionCitaController se relaciona directamente con el modelo Cita y sus

asociaciones, de las cuales obtiene la información necesaria para generar los

correos de confirmación, como datos del paciente, doctor, fecha y hora. No cuenta

con vistas propias, ya que actúa como un servicio de notificación en segundo plano,

sin requerir interacción directa con el usuario a través de la interfaz. Para el envío

de correos, utiliza los servicios SMTP previamente configurados en el archivo

28
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

appsettings.json, lo que permite automatizar la entrega de notificaciones de manera

eficiente y centralizada.

Envío de Notificaciones vía Correo con SMTP

Una funcionalidad clave del sistema web desarrollado con ASP.NET Core MVC es

el envío automático de correos electrónicos como mecanismo de notificación para

los usuarios. Esta capacidad está implementada en el ConfirmacionCitaController y

tiene como finalidad mantener informado al paciente sobre el estado de sus citas

médicas. El sistema envía correos electrónicos para confirmar la creación exitosa

de una cita, notificar cambios en la fecha u hora de una cita existente, o informar

sobre cancelaciones u otras modificaciones importantes. Este proceso no solo

asegura una comunicación efectiva, sino que también mejora la experiencia del

usuario al brindarle mayor confianza mediante recordatorios y confirmaciones

automatizadas.

Tecnología Utilizada

• Protocolo: SMTP (Simple Mail Transfer Protocol).

• Lenguaje: C# con ASP.NET Core.

• Configuración: Parámetros SMTP definidos en el archivo appsettings. json.

• Librería: Uso de SmtpClient y MailMessage del espacio de nombres

System.Net.Mail.

Proceso de Envío de Correo

1. Captura de datos: Cuando un usuario agenda una cita, el sistema recopila

información como:

o Nombre del paciente.

o Especialidad médica.

o Nombre del doctor.

o Fecha y hora de la cita.

2. Envío a través de SMTP:

o Se configura un SmtpClient con servidor, puerto, credenciales y

opciones de seguridad.

o Se ejecuta el método Send () para entregar el mensaje.

3. Resultado:

29
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

o Si el envío es exitoso, se muestra un mensaje de confirmación.

o En caso de fallo (por ejemplo, error de red o credenciales inválidas),

se captura una excepción para manejo de errores.

Configuración Básica en appsettings.json

Ilustración 2: Muestra la lógica para enviar correos desde Gmail mediante SMTP, incluyendo servidor, puerto,
usuario y contraseña.

Código Simplificado de Ejemplo

Ilustración 3: Muestra la lógica del controlador EmailService

30
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Persistencia de Datos en la Web

La persistencia de datos es uno de los pilares fundamentales de cualquier aplicación

web. En este proyecto, se ha implementado utilizando Entity Framework Core

como ORM (Object-Relational Mapping), en combinación con MySQL como sistema

gestor de bases de datos. Esta integración permite almacenar, consultar, modificar

y eliminar datos de manera eficiente, segura y mantenible.

¿Qué es Entity Framework Core?

Entity Framework Core (EF Core) es un framework de acceso

a datos desarrollado por Microsoft que permite a los

desarrolladores interactuar con bases de datos relacionales

mediante objetos C#, evitando la escritura directa de SQL. EF

Core traduce las operaciones del lenguaje C# a comandos

SQL que ejecuta sobre la base de datos.

Configuración de EF Core con MySQL

La conexión entre la aplicación ASP.NET Core y MySQL se configura desde el

archivo appsettings. json y el DbContext de la aplicación.

Ejemplo de configuración:

appsettings. json

Ilustración 4: Muestra la lógica del appsettings.jsom para conectar con la base de datos.

Startup.cs (o Program.cs en versiones recientes)

31
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 5: Muestra ejemplo de lógica en program.cs para el AppDbContext

Clase AppDbContext

Es el puente entre los modelos del sistema y la base de datos. Define los DbSet

para cada entidad.

Ilustración 6: Muestra ejemplo de lógica del AppDbContext para conexión entre modelos.

Ciclo de Vida de una Operación CRUD con EF Core

32
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

 Tabla 1: Ciclo de Vida de una Operación CRUD con EF Core

Migraciones

Las migraciones permiten crear o actualizar la estructura de la base de datos desde

el código fuente.

dotnet ef migrations add InitialCreate

dotnet ef database update

Uso de Entity Framework Core

Entity Framework Core (EF Core) es el ORM (Object-Relational Mapper) utilizado

en este proyecto para facilitar el acceso a la base de datos MySQL desde la

aplicación ASP.NET Core MVC. Esta herramienta permite trabajar con datos

Fase Descripción
Métodos/Funciones

Comunes

1. Creación del

Contexto

EF Core necesita un DbContext para

acceder a la base de datos. Se

configura la conexión y los DbSet.

new

ApplicationDbContext(

)

2. Consulta

(Read)

Se recuperan datos desde la base de

datos. Puede ser por ID, por filtros o

con relaciones.

context.Entity.Find(i

d)context.Entity.ToLi

st()context.Entity.In

clude(...)

3. Creación

(Create)

Se crea una nueva entidad y se agrega

al contexto, pero aún no se guarda en

la base de datos.

context.Add(entity)co
ntext.SaveChanges()

4. Actualización

(Update)

Se modifica una entidad existente.

Primero se recupera, luego se alteran

sus propiedades y finalmente se

guarda.

context.Update(entity

)context.SaveChanges(

)

5. Eliminación

(Delete)

Se elimina una entidad del contexto y

luego se guarda el cambio en la base

de datos.

context.Remove(entity

)context.SaveChanges(

)

6. Seguimiento

(Tracking)

EF Core realiza seguimiento (tracking)

de los cambios en las entidades. Esto

permite detectar qué propiedades se

han modificado.

Automático con el

ChangeTracker del

DbContext

7. Guardado

(Save)

Todos los cambios en el contexto

(agregados, modificados, eliminados)

se confirman en la base de datos con

SaveChanges().

context.SaveChanges()

33
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

relacionales utilizando objetos C# fuertemente tipados, reduciendo

significativamente la necesidad de escribir consultas SQL manuales.

¿Qué es EF Core?

EF Core es una versión moderna, ligera, multiplataforma y de alto rendimiento de

Entity Framework, diseñada para aplicaciones .NET Core. Su propósito es mapear

automáticamente clases .NET a tablas de una base de datos, permitiendo así

desarrollar aplicaciones basadas en datos de forma más productiva y segura.

Componentes Clave de EF Core en el Proyecto

a) Entidades (Modelos)

Son clases C# que representan las tablas de la base de datos.

Ejemplo:

Ilustración 7: Muestra ejemplo de la lógica de un modelo paciente.

b) DbContext

El DbContext es el puente principal entre tus clases (entidades) y la base

de datos. Es responsable de:

• Realizar consultas a la base de datos

34
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

• Guardar cambios

• Configurar las relaciones entre las entidades

Ejemplo:

Ilustración 8: Muestra ejemplo de lógica del código AppDbContext

c) Configuración del Contexto

Para que EF Core sepa cómo conectarse a tu base de datos MySQL, debes

configurar el DbContext en Program.cs.

Ilustración 9: muestra lógica de configuración en Program.cs

Migraciones

EF Core permite aplicar cambios en el esquema de la base de datos a través de

comandos de migración.

35
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

dotnet ef migrations add InitialCreate

dotnet ef database update

Esto crea automáticamente las tablas y relaciones según los modelos definidos.

Consultas con LINQ

Ejemplo de consulta para obtener citas filtradas por especialidad:

Ilustración 10: Muestra cómo hacer una consulta con código SQL.

Operaciones CRUD Básicas

Crear:

Ilustración 11: Muestra ejemplo de lógica básica de operación CRUD créate.

36
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 14: Muestra ejemplo de lógica básica de operación CRUD Eliminar.

Leer:

Ilustración 12: Muestra ejemplo de lógica básica de operación CRUD Leer.

Actualizar:

Ilustración 13: Muestra ejemplo de lógica básica de operación CRUD actualizar.

Eliminar:

37
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

MySQL como motor de base de datos.

En este proyecto, se ha optado por utilizar MySQL como el sistema de gestión

de base de datos (DBMS) principal para el módulo web desarrollado con

ASP.NET Core MVC. MySQL es una base de datos relacional de

código abierto ampliamente utilizada en aplicaciones web por su

rendimiento, estabilidad y compatibilidad con diversos entornos de

desarrollo.

Características de MySQL

MySQL es un sistema de gestión de bases de datos relacional que destaca por ser

de código abierto y compatible con múltiples sistemas operativos como Windows,

Linux y macOS, lo que facilita su implementación en distintos entornos. Está

diseñado para ofrecer un alto rendimiento, capaz de manejar grandes volúmenes

de datos y procesar múltiples transacciones simultáneamente sin afectar su

velocidad ni estabilidad. Gracias a su escalabilidad, MySQL se adapta tanto a

proyectos pequeños como a sistemas empresariales complejos, permitiendo crecer

sin necesidad de cambiar de plataforma. Además, cuenta con soporte para

integridad referencial mediante el uso de claves foráneas, lo que garantiza que las

relaciones entre tablas sean consistentes y que los datos sean confiables.

Finalmente, MySQL utiliza el lenguaje SQL, un estándar ampliamente reconocido

para la gestión y consulta de bases de datos, lo que facilita su aprendizaje y uso en

diversas aplicaciones.

Justificación del uso de MySQL

Se eligió MySQL por las siguientes razones:

• Su integración nativa y estable con Entity Framework Core, el ORM

utilizado en ASP.NET Core.

• Su compatibilidad con herramientas de desarrollo populares como

MySQL Workbench.

• El soporte a largo plazo de la comunidad y de empresas como Oracle.

• Su rendimiento eficiente en operaciones CRUD (crear, leer, actualizar y

eliminar), que es clave para el funcionamiento del sistema de citas médicas.

38
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Diseño de la base de datos

La estructura de la base de datos incluye varias entidades clave relacionadas entre

sí:

• Cita: contiene la información sobre cada cita médica.

• Doctor: almacena los datos personales y profesionales de los médicos.

• Especialidad: define las áreas médicas disponibles en el sistema.

• Paciente: mantiene los registros de los usuarios/pacientes del sistema.

• Usuario: incluye credenciales de autenticación y datos básicos.

Relaciones principales:

• Un Doctor puede tener muchas Citas.

• Una Especialidad puede estar asignada a muchos Doctores.

• Un Paciente puede tener múltiples Citas.

Integración con ASP.NET Core MVC

La conexión entre MySQL y la aplicación web se realiza mediante Entity

Framework Core, que traduce las operaciones sobre objetos C# en

comandos SQL que MySQL ejecuta.

La cadena de conexión se define en el archivo appsettings.json:

Ilustración 15: Muestra lógica de código para la conexión de la base de datos.

Configuración del contexto AppDbContext

En una aplicación ASP.NET Core que utiliza Entity Framework Core como ORM, el

contexto de base de datos es el componente fundamental que actúa como un

39
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

puente entre el modelo de datos (clases C#) y la base de datos relacional (en este

caso, MySQL). En este proyecto, el contexto se define en la clase AppDbContext.

El AppDbContext:

• Administra las conexiones a la base de datos.

• Realiza el mapeo entre las clases del modelo y las tablas de la base de datos.

• Permite consultar, insertar, actualizar y eliminar datos utilizando LINQ.

• Gestiona las relaciones entre entidades, validaciones y configuraciones adicionales.

Estructura de la clase AppDbContext

Ilustración 16: Muestra lógica de código completo AppDbContext.

40
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Relaciones entre entidades

Las relaciones están definidas usando navegación entre objetos y llaves

foráneas. Algunas relaciones clave son:

• Uno a muchos entre Doctor y Cita:

o Un doctor puede tener muchas citas.

o Cada cita pertenece a un solo doctor.

• Uno a muchos entre Paciente y Cita:

o Un paciente puede tener varias citas.

o Cada cita pertenece a un paciente.

• Uno a muchos entre Especialidad y Doctor:

o Una especialidad médica puede ser compartida por varios doctores.

o Cada doctor tiene una especialidad.

Estas relaciones se configuran explícitamente en el método OnModelCreating ()

dentro de AppDbContext:

Ilustración 17: Muestra pastes de la lógica del AppDbContext

Ejecución del flujo de migraciones

Para aplicar todos los cambios al crear o actualizar la base de datos:

41
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

1. Agregar una migración:

dotnet ef migrations add NombreMigracion

2. Aplicar migraciones:

dotnet ef database update

3. Verificar que las tablas y relaciones se reflejan correctamente en el motor

MySQL.

Ilustración 18: Muestra las tablas de la base de datos.

Seguridad Web

La seguridad es un aspecto esencial en el desarrollo de aplicaciones web,

especialmente cuando se trata de un sistema que maneja información confidencial

como datos médicos de pacientes, citas clínicas y accesos diferenciados por roles

(paciente, doctor y director). En este proyecto, se han implementado diversas

medidas de seguridad a nivel de autenticación, autorización, protección contra

ataques y cifrado de datos. Autenticación de usuarios

ASP.NET Core proporciona un sistema de autenticación robusto mediante cookies,

tokens JWT o Identity. En este sistema, se ha optado por ASP.NET Core Identity,

que permite:

42
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

• Registro y login de usuarios.

• Gestión de contraseñas seguras mediante hashing (por defecto, utiliza el

algoritmo PBKDF2).

• Almacenamiento de roles y claims.

• Validación automática de credenciales.

Ejemplo de configuración en Program.cs:

Ilustración 19: Muestra la lógica para trabajar los roles.

Autorización por roles

La autorización garantiza que solo los usuarios autorizados accedan a ciertas

funcionalidades. En este sistema, los roles definidos son:

• Paciente: acceso a gestión de sus citas y expediente.

• Doctor: acceso a su agenda y expedientes de sus pacientes.

• Director: acceso completo para administrar usuarios, doctores y especialidades.

Ilustración 20: Muestra controlador ASP.NET Core que permite a usuarios con rol "Doctor" ver expedientes
simulados por ID.

Protección contra ataques comunes

43
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

ASP.NET Core incorpora protección integrada contra los ataques web más

frecuentes:

ASP.NET Core incorpora varias medidas de seguridad para proteger las

aplicaciones web contra los ataques más comunes. Para prevenir CSRF (Cross-

Site Request Forgery), utiliza tokens antifalsificación que se generan

automáticamente y se insertan en los formularios mediante la directiva

@Html.AntiForgeryToken(), garantizando que las solicitudes provengan de usuarios

legítimos y no de fuentes externas maliciosas. En cuanto a la protección contra XSS

(Cross-Site Scripting), el motor de vistas Razor codifica automáticamente el

contenido HTML generado dinámicamente, evitando que scripts maliciosos se

inyecten y ejecuten en el navegador del usuario. Finalmente, para evitar SQL

Injection, ASP.NET Core recomienda el uso de Entity Framework Core, que

parametriza todas las consultas a la base de datos, lo que elimina la posibilidad de

que un atacante inserte código SQL dañino a través de entradas maliciosas. Estas

protecciones integradas facilitan el desarrollo seguro y robusto de aplicaciones web

en ASP.NET Core.

Cifrado y almacenamiento seguro

• Las contraseñas de los usuarios se almacenan cifradas y nunca en texto plano.

• Los tokens de autenticación se transmiten de forma segura mediante HTTPS.

• Se recomienda implementar políticas de complejidad de contraseña y expiración

de sesiones.

HTTPS y certificados SSL

Para proteger la comunicación entre el navegador y el servidor, se ha habilitado el

uso obligatorio de HTTPS en la aplicación:

Ilustración 21: Muestra app.UseHttpsRedirection();que redirige las solicitudes HTTP a HTTPS para proteger la
comunicación.

44
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Además, al implementar el proyecto en un servidor real (por ejemplo, Azure, AWS

o un VPS), se debe asegurar la instalación de un certificado SSL válido

Autenticación y Autorización en la Aplicación Móvil (Flutter +

Firebase)

La autenticación y autorización son componentes críticos en la arquitectura del

sistema móvil, ya que permiten identificar a los usuarios, asignar roles y restringir

el acceso a funcionalidades según el tipo de usuario (paciente, doctor o director).

Para este proyecto, se utiliza Firebase Authentication como proveedor de

autenticación centralizado, lo que simplifica la implementación y garantiza un alto

nivel de seguridad.

Autenticación con Firebase

Firebase Authentication permite autenticar a los usuarios mediante múltiples

métodos. En esta aplicación se utiliza principalmente:

• Correo electrónico y contraseña: El usuario se registra y luego inicia sesión

mediante sus credenciales.

• Autenticación persistente: El estado de sesión se mantiene incluso si la app se

reinicia, hasta que el usuario cierre sesión explícitamente.

Ejemplo en Dart (Flutter):

Ilustración 22: muestra la lógica de validación de roles al iniciar sesión.

Firebase también maneja automáticamente:

45
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

• Recuperación de contraseñas.

• Verificación de correo electrónico.

• Control de sesión.

Autorización basada en roles

Después de que un usuario se autentica en el sistema, es fundamental

determinar su tipo o rol específico (como paciente, doctor o director) para

otorgarle los permisos y accesos adecuados dentro de la aplicación. Para lograr

esto, el rol de cada usuario se almacena previamente en una base de datos, ya

sea en Firebase Firestore o en Firebase Realtime Database. Cuando el usuario

inicia sesión, el sistema consulta esta información para identificar su rol exacto.

Con base en el rol recuperado, el usuario es redirigido automáticamente a la

interfaz o panel de control que corresponde a su perfil, asegurando así que solo

pueda acceder a las funcionalidades y recursos que le están permitidos. Este

mecanismo de autorización basada en roles garantiza un control de acceso

organizado, seguro y personalizado, mejorando la experiencia del usuario y la

gestión interna de la aplicación.

Ejemplo de consulta de rol:

46
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Casos de uso: Según el valor de rol, se navega a la vista específica para:

• Paciente: ver y agendar citas, acceder a su expediente.

• Doctor: revisar agenda, gestionar citas, ver y editar expedientes.

• Director: administrar doctores, horarios, especialidades, y acceder a la vista

de administración.

Ilustración 23: muestra la lógica de autorización de rol basada en firebase

47
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Seguridad adicional con Firebase Rules

Para evitar accesos no autorizados desde el frontend, se configuran Firebase

Security Rules, las cuales restringen el acceso a colecciones o documentos según

el rol y la autenticación del usuario.

Ejemplo básico:

Ilustración 24: muestra la lógica para evitar el acceso usuarios no autorizados

48
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Manejo de sesiones y cierre de sesión

• Firebase mantiene automáticamente la sesión activa del usuario.

• Se proporciona un botón de "Cerrar sesión" en la interfaz, que ejecuta

Ilustración 25: muestra la función para cerrar el perfil del usuario

Control de Acceso Basado en Roles (Paciente, Doctor, Director)

En un sistema médico digital donde interactúan múltiples tipos de usuarios, es

fundamental implementar un mecanismo de control de acceso robusto basado en

roles. Este mecanismo asegura que cada usuario pueda acceder únicamente a las

funcionalidades que le corresponden según su perfil, protegiendo así la

confidencialidad de los datos y la integridad de las operaciones.

Control de Acceso en la Aplicación Web (ASP.NET Core MVC)

 Gestión de Roles con Identity

ASP.NET Core Identity permite crear y asignar roles fácilmente a los usuarios

autenticados. En este sistema, los roles se definen al momento del registro o

mediante herramientas de administración disponibles para el director.

49
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 26: muestra la lógica de creación y asignación de roles específicos

Autorización por Roles

Las vistas y controladores están protegidos con el atributo [Authorize], el cual

restringe el acceso según el rol del usuario.

Ejemplo:

Ilustración 27: muestra la lógica de autorización de roles

Interfaz Personalizada por Rol

Cada usuario ve una interfaz diferente según su rol. Esto se controla mediante

condiciones en las vistas Razor:

50
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 28: muestra la implementación de menú, según la asignación de roles

Control de Acceso en la Aplicación Móvil (Flutter + Firebase) Almacenamiento de

Roles en Firestore.

Después del registro, a cada usuario se le asigna un rol en una colección de

usuarios:

Ilustración 29: muestra el registro de los usuarios registrados

Restricción de Funcionalidades en Flutter.

Al iniciar sesión, la app consulta el rol del usuario y lo redirige a la interfaz adecuada:

51
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 30: muestra la lógica para consultar datos y redireccionamiento de perfil al usuario asignado.

Protección con Reglas de Seguridad en Firebase

Se aplican reglas que restringen el acceso a los datos desde el backend:

Ilustración 31: muestra la implementación de reglas de acceso

52
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Resumen de Permisos por Rol

Funcionalidad Paciente

Doctor
Director

Agendar y cancelar citas

Ver expediente propio

Ver y modificar expedientes

Gestionar citas

Administrar doctores

Asignar especialidades

Configurar horarios

Acceso completo

 Tabla 2: Permisos por Rol

Desarrollo del Módulo Móvil

(Flutter)

El módulo móvil fue desarrollado utilizando

Flutter, un framework multiplataforma de

código abierto creado por Google, que

permite compilar una única base de código

en aplicaciones nativas para Android e

iOS. En este proyecto, la aplicación móvil

está orientada principalmente a pacientes,

doctores y el director médico, cada uno con

permisos específicos según su rol.

53
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Arquitectura y Patrón MVVM

Se utilizó el patrón MVVM (Model-View-ViewModel) para separar la lógica de

negocios de la interfaz de usuario, facilitando así el mantenimiento del código, la

escalabilidad y la reutilización de componentes:

• Model: Define la estructura de los datos (como citas, usuarios, expediente).

• View: Interfaz gráfica que el usuario ve e interactúa.

• ViewModel: Gestiona la lógica de negocios y se comunica con Firebase y

SQLite.

 Funcionalidades Implementadas

 Rol Paciente

• Registro y autenticación vía Firebase.

• Agendar, modificar y cancelar citas médicas.

• Ver historial de citas y expediente clínico resumido.

• Chat con el doctor asignado.

• Recibir notificaciones cuando el doctor modifica una cita.

Rol Doctor

• Ver agenda diaria de citas.

• Consultar y modificar el expediente completo de sus pacientes.

• Cambiar fecha y hora de una cita si es necesario.

• Comunicarse con pacientes a través del sistema de mensajería.

Rol Director

• Gestionar el alta, edición y eliminación de doctores.

• Asignar especialidades y horarios de trabajo.

• Supervisar toda la plataforma desde el móvil (funcionalidad administrativa).

54
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

 Flujo de Datos

Local y en la Nube

En la aplicación, Firebase se utiliza como la principal plataforma para almacenar y

sincronizar la mayoría de los datos en la nube, asegurando que la información

esté siempre actualizada y accesible desde cualquier dispositivo. Para mejorar la

experiencia del usuario y permitir el funcionamiento incluso sin conexión a internet,

se emplea Sqflite para almacenar datos en caché localmente en el dispositivo.

Esto posibilita que ciertas funcionalidades sigan operando de manera offline. Una

vez que el dispositivo recupera la conexión, todos los cambios realizados

localmente se sincronizan automáticamente con Firestore, manteniendo la

coherencia y actualización de los datos entre el almacenamiento local y la nube.

Sincronización

Al iniciar sesión, la aplicación descarga los datos del usuario desde la nube y los

guarda localmente en el dispositivo para un acceso rápido y eficiente. Cuando el

usuario realiza modificaciones mientras está offline, estos cambios se almacenan

temporalmente en SQLite, garantizando que la información no se pierda. Una vez

que el dispositivo recupera la conexión a internet, la aplicación sincroniza

automáticamente todas las modificaciones almacenadas localmente con la base de

datos en la nube, asegurando que los datos estén actualizados y consistentes en

ambos entornos.

Comunicación con el Backend

Para operaciones específicas como agendar o cancelar citas, la aplicación se

comunica con una API REST desarrollada en ASP.NET Core, lo que garantiza la

integridad y consistencia de los datos al interactuar directamente con la base de

datos MySQL utilizada por el sistema web. Paralelamente, Firebase funciona como

un backend complementario, encargándose de la autenticación de usuarios, el

55
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

envío de notificaciones y el almacenamiento de datos en tiempo real, ofreciendo así

una experiencia más ágil y sincronizada para los usuarios.

Seguridad y Control de Acceso

La autenticación de usuarios se realiza mediante Firebase Auth utilizando el método

de Email y Contraseña, garantizando un acceso seguro y sencillo. Al momento de

iniciar sesión, se valida el rol del usuario para determinar sus permisos y el tipo de

interfaz que debe mostrar. Además, se implementan reglas de seguridad en

Firestore que restringen el acceso no autorizado a los datos, protegiendo la

información sensible. Finalmente, el sistema controla la navegación según el rol,

asegurando que cada tipo de usuario —ya sea paciente, doctor o director— acceda

únicamente a las pantallas y funcionalidades que le corresponden.

56
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Tecnologías Utilizadas

Lenguaje: Dart

Dart es el lenguaje de programación utilizado para

desarrollar la aplicación móvil con Flutter. Creado

por Google, Dart está diseñado para ser eficiente,

moderno y fácil de usar, siendo el lenguaje nativo de

Flutter, lo que garantiza una integración perfecta con

todos sus componentes. Entre sus características

principales, Dart es un lenguaje orientado a objetos

que facilita la reutilización del código y una

organización modular clara. Su sintaxis es limpia y

moderna, similar a lenguajes como JavaScript o

Java, lo que reduce la curva de aprendizaje para los

desarrolladores. Además, ofrece soporte completo para programación asíncrona

mediante palabras clave como async, await y Future, lo que facilita la gestión de

operaciones como llamadas a APIs o acceso a bases de datos. Dart utiliza

compilación Just-In-Time (JIT) durante el desarrollo para permitir recargas rápidas

(hot reload) que aceleran la iteración, y Ahead-Of-Time (AOT) en producción para

optimizar el rendimiento de la aplicación. También cuenta con un recolector de

basura eficiente que gestiona la memoria automáticamente, optimizando el uso de

recursos.

En el contexto del proyecto, Dart presenta varias ventajas importantes. Facilita el

desarrollo rápido de interfaces reactivas con Flutter, mejorando la experiencia de

usuario y la productividad del equipo. Además, permite mantener una sola base de

código que funciona en múltiples plataformas móviles, como Android e iOS,

reduciendo costos y tiempos de desarrollo. Finalmente, Dart ofrece una excelente

integración con herramientas y servicios clave como Firebase para autenticación y

backend, así como con plugins como sqflite para almacenamiento local, brindando

un entorno completo y eficiente para crear aplicaciones móviles modernas y

robustas.

57
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Framework: Flutter

Flutter es un framework de desarrollo multiplataforma que

permite crear aplicaciones para Android e iOS a partir de una

única base de código, lo que reduce significativamente los

costos y tiempos de desarrollo. Una de sus características más

destacadas es el Hot Reload, que permite ver los cambios en la interfaz de usuario

de forma inmediata, acelerando el ciclo de desarrollo y facilitando la

experimentación. Flutter ofrece un amplio catálogo de widgets personalizables, que

facilitan la construcción de interfaces modernas, responsivas y atractivas. Además,

cuenta con un motor gráfico propio que no depende de componentes nativos para

renderizar la interfaz, garantizando un aspecto uniforme en todas las plataformas.

Gracias a su compilación Ahead-Of-Time (AOT), Flutter proporciona un alto

rendimiento y una experiencia fluida para el usuario final.

En el contexto del proyecto, Flutter presenta múltiples ventajas. Permite acelerar el

desarrollo de interfaces adaptadas a distintos perfiles de usuario, como pacientes,

doctores y directores, facilitando la creación de experiencias personalizadas.

También facilita la integración con Firebase como backend en la nube,

aprovechando servicios como autenticación, base de datos en tiempo real y

notificaciones. Además, mejora la experiencia del usuario final con interfaces

dinámicas, responsivas y altamente personalizables. Finalmente, Flutter soporta el

uso de paquetes adicionales importantes para el proyecto, como firebase_core,

firebase_auth, cloud_firestore y sqflite, brindando un ecosistema robusto para el

desarrollo de aplicaciones móviles completas.

58
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

IDE: Visual Studio Code

Visual Studio Code (VS Code) es el entorno de desarrollo

integrado (IDE) utilizado para la creación de la aplicación móvil

en Flutter. Es una herramienta ligera, rápida y altamente

extensible, desarrollada por Microsoft, que se ha convertido en

uno de los entornos más populares para el desarrollo de

aplicaciones multiplataforma.

Características de Visual Studio Code:

Visual Studio Code es un editor de código ligero y rápido que consume pocos

recursos del sistema, lo que lo hace ideal para trabajar en equipos con

especificaciones modestas. Cuenta con extensiones especializadas para Flutter y

Dart que proporcionan funcionalidades como autocompletado, depuración, testing

y análisis de código. Además, incluye una terminal integrada que permite ejecutar

comandos directamente sin salir del entorno de desarrollo, soporte para control de

versiones mediante integración con Git, y una interfaz altamente personalizable

que puede adaptarse a las preferencias del usuario mediante temas, atajos de

teclado y configuraciones específicas.

Ventajas en el contexto del proyecto:

En el contexto del proyecto, Visual Studio Code ofrece un soporte completo para

Flutter y todas sus herramientas asociadas, lo que facilita el desarrollo eficiente de

la aplicación móvil. Su depurador y consola integrada permiten identificar y

corregir errores rápidamente, mejorando la calidad del código. Asimismo, facilita

una integración fluida con Firebase y otras dependencias importantes gracias a

sus terminales y extensiones, lo que contribuye a un entorno de trabajo más

robusto y productivo para el equipo de desarrollo.

59
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Base de Datos Local: Sqflite

Para la persistencia de datos local en la aplicación móvil, se ha

utilizado Sqflite, un plugin de Flutter que permite utilizar una

base de datos SQLite de forma local. Esta herramienta es

fundamental cuando se requiere que ciertos datos estén

disponibles sin conexión a internet, mejorando la experiencia

del usuario en entornos de conectividad limitada.

Características de Sqflite:

Sqflite es un paquete basado en SQLite que utiliza un motor de base de datos ligero

y ampliamente reconocido por su eficiencia y confiabilidad. Entre sus características

principales se encuentra el soporte completo para operaciones CRUD (crear, leer,

actualizar y eliminar), lo que permite una gestión integral de los datos. Además,

ofrece la posibilidad de realizar consultas personalizadas mediante sentencias SQL

tradicionales, brindando flexibilidad en el manejo de la información. Sqflite también

garantiza la persistencia de datos en modo offline, asegurando que la información

esté disponible incluso cuando no hay conexión a la red. Por último, es compatible

con múltiples plataformas, funcionando tanto en dispositivos Android como iOS, lo

que lo convierte en una opción ideal para aplicaciones móviles multiplataforma.

Ventajas en el contexto del proyecto:

En el contexto del proyecto, Sqflite ofrece varias ventajas importantes. Al almacenar

datos localmente, mejora la eficiencia de la aplicación al reducir la cantidad de

llamadas innecesarias a servicios en línea, lo que también contribuye a disminuir el

consumo de datos y la dependencia de la conexión a internet. Esta capacidad de

persistencia offline brinda a los usuarios una experiencia más fluida y confiable,

permitiéndoles acceder y modificar información incluso sin estar conectados.

Además, Sqflite proporciona un acceso rápido y directo a datos esenciales

almacenados localmente, lo que optimiza el rendimiento general de la aplicación y

mejora la satisfacción del usuario.

60
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Backend en la Nube: Firebase

Firebase es la plataforma de desarrollo de aplicaciones móviles

y web proporcionada por Google, y se ha utilizado como backend

en la nube para la aplicación móvil del proyecto. Firebase ofrece

una amplia gama de servicios que simplifican la gestión del

backend, permitiendo que los desarrolladores se concentren en la

lógica del negocio y la experiencia del usuario.

Servicios de Firebase utilizados en el proyecto:

En el proyecto se utilizan varios servicios clave de Firebase para garantizar una

gestión eficiente y segura de los datos y usuarios. Firebase Authentication se

encarga de manejar el registro e inicio de sesión de los distintos tipos de usuarios,

como pacientes, doctores y directores, proporcionando un sistema seguro y

confiable para la autenticación. Por otro lado, Cloud Firestore funciona como la base

de datos NoSQL en tiempo real, almacenando información vital como expedientes

médicos, conversaciones de chat y la programación de citas. Gracias a esta

combinación, el proyecto puede ofrecer una experiencia fluida, segura y

sincronizada en tiempo real para todos los usuarios involucrados.

Ventajas de Firebase en el contexto del proyecto:

Firebase aporta numerosas ventajas que potencian el rendimiento y la confiabilidad

de la aplicación. Su escalabilidad automática permite que la plataforma se adapte

sin esfuerzo a un número creciente de usuarios, sin necesidad de configurar

manualmente los servidores, lo que facilita el crecimiento del sistema. La capacidad

de sincronización en tiempo real garantiza que los datos, como mensajes de chat y

actualizaciones de citas, se actualicen instantáneamente entre usuarios, mejorando

la comunicación y la coordinación. Además, al estar alojado en la nube de Google,

Firebase ofrece alta disponibilidad y un servicio estable, asegurando que la

aplicación esté siempre accesible. Finalmente, Firebase proporciona reglas de

61
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

seguridad personalizadas que protegen la información médica sensible,

garantizando la privacidad y cumplimiento de normativas de seguridad.

Uso estratégico en el proyecto:

Firebase actúa como el intermediario entre el frontend móvil desarrollado en Flutter

y la lógica del negocio, ofreciendo funcionalidades críticas como autenticación,

almacenamiento seguro, mensajería instantánea y gestión de datos estructurados

y no estructurados en la nube.

Firestore (Base de Datos en la Nube)

Para la gestión de datos en la nube en la aplicación móvil, se ha utilizado Cloud

Firestore, un servicio de base de datos NoSQL proporcionado por Firebase.

Firestore es una base de datos flexible, escalable y en tiempo real, ideal para

aplicaciones móviles modernas como la desarrollada en este proyecto.

Características principales de Firestore:

Firestore es una base de datos NoSQL que organiza la información mediante una

estructura basada en documentos y colecciones, donde las colecciones funcionan

como tablas y los documentos como filas, lo que facilita el almacenamiento tanto de

datos estructurados como semiestructurados. Una de sus principales características

es la sincronización en tiempo real, que permite que cualquier cambio en la base de

datos se refleje automáticamente en la interfaz del usuario sin necesidad de

recargar la aplicación. Además, Firestore ofrece alta disponibilidad al ser un servicio

completamente administrado y alojado en la nube de Google, garantizando

estabilidad y confiabilidad. También soporta consultas complejas, incluyendo filtros,

ordenamientos, paginación y combinaciones de condiciones, lo que brinda

flexibilidad para acceder y manipular los datos de manera eficiente.

Uso de Firestore en el proyecto:

• Gestión de citas médicas: Creación, modificación y cancelación de citas en

tiempo real.

• Almacenamiento de expedientes médicos: Documentos clínicos asociados a

cada paciente, accesibles solo por el usuario autorizado.

62
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

• Sistema de chat en tiempo real: Comunicación directa entre pacientes y

doctores, con mensajes almacenados en colecciones específicas por

conversación.

• Control de usuarios y roles: Información sobre cada usuario autenticado,

incluyendo su rol (paciente, doctor, director) y configuración de perfil.

Ejemplo de estructura de datos:

Ilustración 32: visualización de la estructura de datos registrados para agendar citas

Firebase Cloud Messaging (Notificaciones Push)

Firebase Cloud Messaging (FCM) es el servicio utilizado en la aplicación móvil

para el envío de notificaciones push a los usuarios. Este componente mejora

significativamente la interacción entre el sistema y sus usuarios al mantenerlos

informados en tiempo real sobre eventos relevantes, como la confirmación,

reprogramación o cancelación de citas médicas.

Características de FCM:

Firebase Cloud Messaging (FCM) permite el envío dirigido de mensajes a

dispositivos individuales, grupos de usuarios o suscriptores a temas específicos,

garantizando que las notificaciones lleguen al público adecuado. Las notificaciones

pueden mostrarse tanto en primer plano como en segundo plano, siendo visibles

incluso cuando la aplicación está cerrada, lo que asegura que los usuarios estén

siempre informados. Respaldado por la infraestructura de Google, FCM ofrece una

alta tasa de entrega y eficiencia en el envío de mensajes. Además, su integración

con otros servicios de Firebase como Authentication y Firestore facilita su

implementación y coordinación con el resto del sistema.

En el proyecto, FCM se utiliza para varios casos de uso clave que mejoran la

comunicación con los usuarios. Por ejemplo, cuando un paciente programa una cita,

recibe una notificación con los detalles relevantes como fecha, hora y doctor

asignado. Si el doctor reprograma una cita, el paciente es notificado al instante, y

en caso de cancelación de citas, ya sea por parte del paciente o del personal

médico, se envían alertas automáticas para mantener a todos informados. También

63
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

se emplea para enviar mensajes importantes del sistema o del director, tales como

recordatorios de citas o comunicaciones urgentes, asegurando que la información

crítica llegue oportunamente a los usuarios.

Uso de FCM en el proyecto:

• Confirmación de citas: Cuando un paciente programa una cita, recibe una

notificación con los detalles (fecha, hora y doctor asignado).

• Reprogramación por parte del doctor: Si el doctor cambia la cita, el paciente es

notificado al instante.

• Cancelación de citas: Notificación automática cuando una cita es cancelada, ya

sea por el paciente o por el personal médico.

• Mensajes importantes del sistema o del director: Alertas administrativas, como

recordatorios de cita o mensajes urgentes.

Implementación técnica:

La implementación técnica de Firebase Cloud Messaging (FCM) en Flutter se realiza

principalmente mediante los paquetes firebase_messaging y

flutter_local_notifications. Estos paquetes permiten gestionar tanto la recepción

como la visualización de notificaciones en diferentes estados de la aplicación, ya

sea en primer plano, segundo plano o cuando la app está cerrada. Cada dispositivo

registra un token único con FCM, el cual se asocia al usuario autenticado para dirigir

las notificaciones de manera personalizada. Para enviar las notificaciones, se puede

utilizar directamente Firestore o implementar funciones en la nube (Cloud Functions)

que reaccionen a eventos específicos, como la creación de un nuevo documento

relacionado con una cita, desencadenando así notificaciones programadas o

automáticas para mantener a los usuarios informados en tiempo real.

Ventajas de usar FCM:

• Gratuito y altamente escalable.

• Bajo consumo de batería y datos.

• Personalización del contenido y acciones de las notificaciones.

• Compatibilidad multiplataforma (Android, iOS y Web).

64
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Uso de Servicios REST para Integración con el Sistema Web

La arquitectura del proyecto permite la integración entre los distintos módulos del

sistema (web y móvil) mediante servicios web RESTful, lo que facilita la

interoperabilidad, la escalabilidad y la independencia de plataformas.

¿Qué es una API REST?

Una API REST (Representational State Transfer) es una interfaz que

permite la comunicación entre sistemas utilizando los métodos

estándar del protocolo HTTP (GET, POST, PUT, DELETE). Las APIs

REST son ampliamente utilizadas por su simplicidad, eficiencia y

compatibilidad multiplataforma.

Implementación de Servicios REST en el Proyecto Web

El sistema web, desarrollado con ASP.NET Core MVC, puede actuar como

proveedor de servicios REST a través de controladores tipo ApiController,

exponiendo datos almacenados en MySQL mediante endpoints que pueden ser

consumidos por la aplicación móvil u otros sistemas externos.

Ejemplos de Endpoints REST Web:

• GET /api/doctores → Lista todos los doctores registrados.

• GET /api/especialidades → Muestra todas las especialidades médicas

disponibles.

• POST /api/citas → Permite registrar una nueva cita médica.

• PUT /api/citas/{id} → Actualiza una cita médica.

• DELETE /api/citas/{id} → Elimina una cita específica.

Estos servicios hacen uso del ORM Entity Framework Core para interactuar con

la base de datos MySQL, asegurando un acceso estructurado y seguro a los datos.

 Integración con la Aplicación Móvil

65
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

La app móvil desarrollada en Flutter puede consumir estos servicios REST

mediante librerías como http, dio o integraciones con Retrofit para Dart, permitiendo

que los módulos web y móvil compartan información cuando sea necesario.

Uso de integración:

• Sincronización de información de doctores y especialidades en la app móvil.

• Visualización de citas programadas creadas desde la plataforma web.

• Administración centralizada de usuarios y control de acceso desde el

BackOffice web.

Funcionalidades por Rol: Paciente

El rol de Paciente está diseñado para brindar a los usuarios acceso sencillo, seguro

y eficiente a los servicios médicos ofrecidos a través de la plataforma. Las

funcionalidades disponibles para este perfil están orientadas a mejorar la

experiencia del usuario, permitiendo una gestión autónoma de sus citas y la consulta

de su información médica.

Registro/Login (Firebase Authentication).

Firebase Authentication permite que los pacientes se registren y autentiquen de

manera sencilla y segura utilizando correo electrónico y contraseña. Además, ofrece

la posibilidad de ampliar los métodos de autenticación incluyendo proveedores

externos como Google o Facebook, facilitando el acceso a la aplicación mediante

cuentas ya existentes. Este servicio no solo garantiza una gestión eficiente de las

sesiones de usuario, sino que también proporciona una capa robusta de seguridad,

siendo escalable para manejar desde pocos hasta miles de usuarios sin

comprometer el rendimiento ni la protección de la información.

Solicitud y Cancelación de Citas

En el sistema, el paciente tiene la capacidad de solicitar y cancelar citas de manera

sencilla desde su dispositivo móvil. Primero, puede navegar por las diferentes

66
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

especialidades médicas disponibles y, al seleccionar una, se despliega una lista de

doctores junto con sus horarios disponibles. El paciente entonces elige la fecha y

hora que mejor le convenga para crear la cita, la cual se almacena de forma

inmediata en Firestore, garantizando que la información se sincronice en tiempo real

con el sistema central. Asimismo, el paciente puede cancelar una cita directamente

desde la aplicación, y dicha acción se registra y actualiza al instante, manteniendo

la base de datos actualizada y permitiendo una gestión eficiente y transparente de

las agendas médicas.

Visualización de Expediente Médico

La aplicación móvil permite al paciente acceder a una visualización resumida de su

expediente médico de manera rápida y segura. Este expediente incluye información

general del paciente, un historial detallado de citas anteriores, así como

diagnósticos o notas médicas registradas por los doctores. Los datos mostrados se

sincronizan constantemente desde Firestore o, alternativamente, desde una API

que conecta con la base de datos del sistema web, garantizando que la información

esté siempre actualizada y disponible para el paciente en tiempo real. Esta

funcionalidad facilita el seguimiento de su salud y mejora la comunicación entre

paciente y personal médico.

Cambio de Fecha/Hora de Cita

El sistema permite al paciente modificar una cita previamente programada cuando

surgen imprevistos, brindándole flexibilidad para elegir una nueva fecha y hora

disponible según el calendario actualizado del doctor. Antes de confirmar el cambio,

el sistema realiza una validación para asegurar que el nuevo horario esté libre y no

genere conflictos en la agenda médica. Una vez confirmado el ajuste, el doctor

recibe una notificación automática mediante Firebase Cloud Messaging,

garantizando que esté informado en tiempo real sobre cualquier modificación en su

agenda, lo que mejora la coordinación y comunicación entre pacientes y

profesionales de salud.

67
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Funcionalidades por Rol: Doctor

El rol de Doctor está orientado a proporcionar herramientas que faciliten la gestión

de sus pacientes y citas, permitiendo un control más eficiente y personalizado del

proceso de atención médica. Este perfil cuenta con acceso extendido a la

información clínica y funcionalidad para mantener actualizado el expediente de sus

pacientes.

Gestión de Citas Programadas

El sistema ofrece al doctor la capacidad de gestionar sus citas programadas de

manera eficiente desde su panel en la aplicación móvil. Puede consultar todas las

citas agendadas organizadas por fecha y hora, lo que facilita la planificación de su

jornada. Además, tiene acceso a información relevante como los datos del paciente,

el motivo de consulta cuando ha sido ingresado, y la especialidad asignada a cada

cita. Esta funcionalidad permite al doctor organizar su agenda diaria de forma clara

y anticipada, optimizando su tiempo y mejorando la preparación para las atenciones

médicas.

Edición de Expediente Clínico

El doctor cuenta con acceso completo al expediente clínico de cada paciente que

tiene asignado, lo que le permite gestionar de manera integral la información

médica. Desde la aplicación, puede añadir, modificar o eliminar datos clínicos

importantes, tales como diagnósticos, observaciones médicas y tratamientos

indicados, asegurando que el historial médico esté siempre actualizado y refleje el

estado real del paciente. Toda esta información se almacena en Firebase Firestore

o se sincroniza con el sistema web a través de una API REST, garantizando la

persistencia de los datos y su actualización en tiempo real para que tanto el personal

médico como el paciente tengan acceso a información precisa y oportuna.

68
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Notificación al Paciente en Caso de Cambio

Cuando el doctor necesita modificar una cita por motivos de disponibilidad o

emergencias, tiene la opción de cambiar la fecha y/o la hora programada. Al realizar

esta modificación, el sistema actualiza inmediatamente el estado de la cita en

Firestore y/o en la base de datos MySQL, asegurando que la información esté

sincronizada en todas las plataformas. Además, se envía automáticamente una

notificación al paciente a través de Firebase Cloud Messaging (FCM), informándole

del nuevo horario para mantenerlo al tanto de los cambios. Finalmente, la

modificación queda registrada en el historial del sistema, facilitando el control

administrativo y el seguimiento de todas las alteraciones realizadas sobre las citas.

Administración de Doctores

El director cuenta con un panel de control administrativo que le permite gestionar de

manera eficiente el personal médico del sistema. Desde esta interfaz, puede

agregar nuevos doctores registrando su información básica como nombre, correo

electrónico, credenciales y otros datos relevantes para su identificación y contacto.

Además, tiene la capacidad de consultar el listado completo de doctores registrados,

lo que facilita la supervisión y organización del equipo médico. En caso de

actualizaciones o cambios en la información de los doctores, el director puede

modificar los datos directamente desde el panel, asegurando que el sistema siempre

mantenga información precisa y actualizada sobre el personal.

Asignación de Especialidades y Horarios

Al crear o editar el perfil de un doctor, el director tiene la capacidad de asignarle una

o varias especialidades médicas acorde a su formación y certificaciones,

asegurando que cada profesional esté correctamente categorizado dentro del

sistema. Además, puede establecer y configurar el horario de trabajo semanal para

cada médico, definiendo sus disponibilidades para la atención a pacientes. También

es posible gestionar rotaciones o realizar cambios en los horarios según las

necesidades del centro médico, brindando flexibilidad en la organización del

69
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

personal. Toda esta información queda registrada y sincronizada, siendo accesible

tanto desde el sistema web como desde la aplicación móvil, lo que facilita su uso

efectivo en el proceso de agendamiento de citas.

Eliminación de Personal Médico

• En caso de retiro, licencia prolongada o baja del personal, el director puede:

• Eliminar doctores del sistema, deshabilitando su acceso y disponibilidad en

la plataforma.

• Esta acción también actualiza automáticamente los horarios y disponibilidad

visibles para los pacientes al momento de agendar citas.

Persistencia de Datos en el Módulo Web (ASP.NET Core MVC)

 Entity Framework Core

Entity Framework Core es un ORM (Object-Relational Mapping) que se utiliza para

gestionar de manera eficiente las operaciones con la base de datos relacional

MySQL en el proyecto. Gracias a esta herramienta, las clases definidas en C# se

mapean automáticamente a las tablas correspondientes en la base de datos, lo que

simplifica significativamente la manipulación y consulta de datos. Además, EF Core

permite trabajar con LINQ, proporcionando una forma intuitiva y potente de realizar

consultas, actualizaciones y otras operaciones sobre la base de datos sin necesidad

de escribir código SQL directamente.

MySQL como motor de base de datos

La base de datos relacional utilizada en el proyecto almacena información clave

como los datos de usuarios (doctores, pacientes y director), citas médicas,

especialidades y los historiales médicos que se sincronizan desde la aplicación

móvil cuando corresponde. Esta estructura organizada permite gestionar

eficientemente grandes volúmenes de datos relacionados, garantizando la

coherencia y el acceso rápido a la información necesaria. Entre sus principales

ventajas destacan la escalabilidad, que facilita el crecimiento del sistema sin perder

70
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

rendimiento; la fiabilidad, que asegura la integridad y disponibilidad de los datos; y

el soporte para integridad referencial, que mantiene la consistencia entre las

diferentes tablas y relaciones dentro de la base de datos.

Contexto AppDbContext

• Clase que actúa como punto de conexión entre la aplicación y la base de

datos.

• Configurado para manejar las entidades del sistema y sus relaciones (citas,

doctores, especialidades, etc.).

• Utiliza migraciones para crear y actualizar el esquema de la base de datos

automáticamente.

 Persistencia de Datos en el Módulo Móvil (Flutter + Firebase)

 Firebase Firestore (Base de datos en la nube)

Firebase Firestore es una base de datos en la nube utilizada para almacenar

información dinámica y sincronizada del sistema, como las citas agendadas por los

pacientes, los cambios realizados en los expedientes médicos por los doctores, y

los datos actualizados del perfil de usuario. Esta base de datos NoSQL destaca por

ofrecer sincronización en tiempo real, lo que permite que cualquier modificación se

refleje instantáneamente en los dispositivos móviles de los usuarios. Además,

cuenta con escalabilidad automática, facilitando que la aplicación pueda crecer y

manejar un número creciente de usuarios sin necesidad de ajustes manuales en la

infraestructura, garantizando así un servicio fluido y confiable.

sqflite (Base de datos local en Flutter)

Utilizada en Flutter para el almacenamiento temporal de datos cuando el

dispositivo no cuenta con conexión a Internet. Esta base de datos permite guardar

citas y mantener copias de los expedientes médicos directamente en el

dispositivo, asegurando que la aplicación continúe funcionando sin interrupciones

en modo offline. Una vez que la conectividad se restablece, Sqflite sincroniza

71
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

automáticamente la información almacenada localmente con Firebase Firestore,

garantizando que todos los datos estén actualizados y consistentes tanto en el

dispositivo como en la nube.

Sincronización

• Se implementa lógica en Flutter para sincronizar datos entre:

o sqflite (local).

o Firestore (nube).

o API REST del sistema web (cuando se requiere compartir datos).

Firebase Firestore para Almacenamiento en la Nube

Firebase Firestore es el servicio de base de datos NoSQL en tiempo real ofrecido

por Google como parte de la plataforma Firebase. En este proyecto, se utiliza

Firestore como la principal solución de almacenamiento en la nube para la

aplicación móvil desarrollada en Flutter.

Características Clave

• Modelo de documentos y colecciones: Firestore organiza los datos en

documentos que se agrupan dentro de colecciones, permitiendo una

estructura flexible y escalable.

• Sincronización en tiempo real: Cualquier cambio en los datos se refleja

automáticamente en los dispositivos conectados, lo que permite una

experiencia de usuario fluida e interactiva.

• Escalabilidad automática: Firestore ajusta automáticamente la capacidad

según la demanda, ideal para aplicaciones con crecimiento de usuarios.

• Alta disponibilidad y replicación: Los datos se replican en múltiples centros

de datos para garantizar redundancia y confiabilidad.

72
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Uso en el Proyecto

En el contexto de esta aplicación, Firestore se emplea para almacenar y gestionar

la información relevante a cada uno de los roles del sistema:

Paciente

• Citas médicas registradas.

• Resumen de su expediente clínico.

• Mensajes enviados al doctor.

Doctor

• Lista de citas programadas.

• Información médica editable de cada paciente.

• Historial de interacciones con pacientes.

Director

• Datos de los doctores agregados o modificados desde la app.

• Cambios de horarios y asignación de especialidades (si aplica desde móvil).

 Integración con Flutter

• Se utiliza el plugin cloud_firestore para conectarse y operar sobre Firestore

desde Flutter.

• Las operaciones CRUD (crear, leer, actualizar, eliminar) se implementan de

forma asíncrona para garantizar fluidez en la interfaz de usuario.

• La aplicación escucha en tiempo real los cambios en los documentos

relevantes (por ejemplo, notificaciones sobre citas), permitiendo una

actualización inmediata sin necesidad de recargar vistas.

Seguridad y Reglas

Las reglas de seguridad de Firestore se configuran cuidadosamente para

garantizar que el acceso a los datos esté restringido según el rol del usuario

73
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

autenticado. De esta manera, los pacientes únicamente pueden leer y modificar su

propia información, asegurando su privacidad. Los doctores, por su parte, tienen

permiso para acceder exclusivamente a los datos de los pacientes que les han

sido asignados, lo que permite una gestión clínica segura y controlada. En cambio,

el director cuenta con privilegios más amplios para supervisar y administrar la

información dentro del sistema. Estas reglas se implementan directamente desde

el panel de Firebase Console, utilizando Firebase Authentication como el

mecanismo de identidad que valida y determina los permisos de cada usuario,

garantizando así un acceso seguro y personalizado a los recursos.

sqflite para Almacenamiento Local Offline

Para garantizar la funcionalidad de la aplicación móvil incluso sin conexión a

Internet, se ha implementado una capa de persistencia local utilizando la biblioteca

sqflite, que permite el uso de SQLite en aplicaciones desarrolladas con Flutter.

Rol de sqflite en el Proyecto

El sistema cuenta con un almacenamiento temporal que guarda datos críticos

como las citas agendadas por el paciente, la información resumida del expediente

médico y los datos del perfil del usuario autenticado. Esto asegura que la

información esencial esté disponible de manera rápida y eficiente para su consulta

y actualización.

Además, se garantiza la operatividad offline, permitiendo que el paciente pueda

consultar sus citas y su expediente médico sin necesidad de estar conectado a

Internet. Los cambios realizados localmente se almacenan y se sincronizan

automáticamente con Firestore cuando la conexión a la red se restablece,

manteniendo la información actualizada y consistente.

Este enfoque también soporta funcionalidades clave de la aplicación, como mostrar

las citas programadas en modo offline, editar y guardar temporalmente los registros

clínicos hasta que puedan ser subidos a la nube, y reducir el tiempo de carga inicial

mediante el uso de caché local, mejorando así la experiencia del usuario y la

eficiencia del sistema.

74
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ventajas del Uso de sqflite

• Velocidad: Acceso rápido a datos locales sin latencia de red.

• Persistencia: Los datos se conservan, aunque se cierre o reinicie la app.

• Compatibilidad: Disponible tanto para Android como para iOS.

• Simplicidad: Interfaz directa para realizar operaciones SQL (CRUD).

Integración con Firestore

Se ha implementado una lógica de sincronización entre la base de datos local

(sqflite) y Firestore (nube):

Se implementa una lógica de sincronización automática con Firestore al detectar

conexión a Internet, garantizando coherencia entre dispositivos. Se usan DAOs

personalizados para gestionar el acceso a datos, y se manejan los estados

mediante Provider o Riverpod. Además, se aplican políticas para resolver conflictos

de sincronización, incluyendo actualizaciones y eliminaciones locales.

Sincronización de Datos Local/Nube

Una funcionalidad crítica en aplicaciones móviles modernas es la capacidad de

operar sin conexión a Internet y mantener la coherencia de los datos una vez que

se restablece la conectividad. En este proyecto, se implementó un mecanismo de

sincronización bidireccional entre sqflite (almacenamiento local) y Firebase

Firestore (almacenamiento en la nube), permitiendo al usuario una experiencia

fluida tanto online como offline.

 Objetivos de la Sincronización

La sincronización en el sistema tiene como objetivo principal permitir una

funcionalidad offline completa para pacientes, doctores y directores, asegurando

que puedan realizar operaciones esenciales incluso sin conexión a Internet. Esto

reduce la dependencia inmediata de la red para actividades básicas como visualizar

citas o editar datos clínicos, mejorando la continuidad del servicio.

Además, se busca garantizar la coherencia de los datos entre la información

almacenada localmente en el dispositivo y la que se encuentra persistida en

75
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Firestore, evitando inconsistencias. Para ello, se implementan mecanismos de

control de versiones y marcas de tiempo que evitan la generación de datos

duplicados o la sobrescritura de información errónea, asegurando la integridad y

precisión de los registros.

 Estrategia de Sincronización Implementada

La estrategia de sincronización implementada en la aplicación es manual pero con

un control automático de conflictos, diseñada para mantener la coherencia y

actualización de los datos entre el dispositivo local y Firestore. Para ello, cada

registro que se modifica localmente se marca con un campo isSynced = false junto

con una marca de tiempo (timestamp), lo que permite identificar fácilmente los

cambios pendientes de sincronización.

Para asegurar que la sincronización se realice en el momento adecuado, se utiliza

un monitor de conectividad basado en el paquete connectivity_plus, que detecta

cambios en el estado de la red. Cuando la aplicación identifica que el dispositivo

ha recuperado la conexión a Internet, se activa un proceso en segundo plano que

sube a Firestore todos los registros locales que aún no han sido sincronizados, y a

su vez actualiza los datos locales con cualquier cambio que haya ocurrido en la

nube desde la última sincronización.

En cuanto a la resolución de conflictos, se aplica una regla sencilla pero efectiva:

se prioriza siempre el dato más reciente según la timestamp asociada. De esta

manera, se minimizan las pérdidas de información y se mantiene la integridad y

precisión de los datos en ambas fuentes.

Componentes Técnicos

• Firebase Firestore:

o Base de datos central sincronizada entre dispositivos.

• sqflite:

o Base de datos local para uso offline.

• Provider / Riverpod (u otro gestor de estado):

o Administra el flujo de datos entre la lógica de negocio y la interfaz.

• Timestamps y flash:

o Cada entidad contiene un lastUpdated y un isSynced.

76
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Casos de Uso Comunes

Acción Estado Offline Sincronización Posterior

Crear cita
Guardada en sqflite con

isSynced = false

Se sube a Firestore cuando hay

conexión

Editar

expediente

Cambios se almacenan

localmente
Se actualiza Firestore al reconectarse

Eliminar cita
Se marca como eliminada en

local

Se borra de Firestore si el estado es

sincronizable

Tabla 3: Casos de uso comunes

 Beneficios Obtenidos

• Experiencia de usuario sin interrupciones.

• Tolerancia a fallos de red.

• Reducción de llamadas a la nube, lo cual mejora el rendimiento y reduce

costos.

• Consistencia eventual asegurada por la estrategia de sincronización

diferida.

Diseño de UI Responsiva con Flutter (Material Design)

El diseño de interfaces en aplicaciones móviles no solo debe ser estéticamente

agradable, sino también funcional, accesible y adaptable a distintos dispositivos. En

este proyecto, se utilizó Flutter como framework de desarrollo, aprovechando su

soporte nativo para Material Design y sus capacidades integradas para construir

interfaces responsivas.

Fundamentos de Material Design

Material Design es un sistema de diseño desarrollado por Google que proporciona

directrices visuales y de interacción para construir interfaces coherentes, accesibles

y modernas. Sus principios clave son:

77
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

• Jerarquía visual clara (tipografía, color, iconografía).

• Transiciones y animaciones suaves.

• Componentes reutilizables (botones, tarjetas, listas).

• Enfoque en la accesibilidad y usabilidad.

Flutter implementa Material Design de forma nativa mediante widgets como

Scaffold, AppBar, FloatingActionButton, TextField, Card, entre otros.

 Estructura Visual de la Aplicación

La aplicación móvil se estructura visualmente en base a:

• Layouts responsivos con MediaQuery, LayoutBuilder y Flexible, que

ajustan el contenido según el tamaño de pantalla.

• Navegación modular utilizando Navigator, BottomNavigationBar y Drawer.

• Estilos centralizados con ThemeData para asegurar coherencia visual.

Widgets y Componentes Personalizados

Se desarrollaron widgets personalizados para mantener la consistencia visual y

mejorar la reutilización del código:

• CustomAppointmentCard: muestra citas médicas de forma compacta.

• DoctorProfileTile: presenta detalles del doctor con su especialidad.

• ResponsiveScaffold: estructura adaptable que cambia entre diseño de una

sola columna y múltiples columnas según el tamaño del dispositivo.

Adaptabilidad y Escalabilidad

Para que la app funcione bien en teléfonos, tablets y distintas resoluciones, se

usaron diseños fluidos con Expanded y Flexible, que permiten adaptar los

elementos al espacio disponible. Además, se ajustan automáticamente el tamaño

de fuentes e íconos usando MediaQuery.textScaleFactorOf(context) e IconTheme,

garantizando una interfaz escalable y cómoda en cualquier dispositivo.

78
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Accesibilidad

Se prestó especial atención a las buenas prácticas de accesibilidad:

• Contraste adecuado de colores.

• Soporte para lectores de pantalla (Semantics).

• Tamaños de texto escalables.

• Botones e interacciones táctiles amigables.

Ejemplo de Código

Ilustración 33: muestra la lógica de personalización de estilos aplicados en los widgets.

79
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Beneficios Obtenidos

• Interfaz intuitiva y atractiva para todos los roles (paciente, doctor,

director).

• Experiencia de usuario consistente en diferentes dispositivos.

• Reducción del tiempo de desarrollo gracias al enfoque declarativo de

Flutter.

• Facilidad de mantenimiento y escalabilidad.

Formularios Dinámicos y Navegación Intuitiva

La interacción del usuario con la aplicación móvil se basa en gran parte en la gestión

eficiente de formularios y una navegación clara. Para ello, se aplicaron prácticas

modernas de diseño y desarrollo con Flutter, aprovechando su capacidad para

construir formularios dinámicos y flujos de navegación fluidos e intuitivos.

 Formularios Dinámicos

Los formularios permiten capturar datos clave del usuario, como el registro de una

cita, actualización del expediente médico o edición de perfil. En este proyecto se

utilizaron formularios dinámicos y validados en tiempo real, construidos mediante

el widget Form y TextFormField, junto con lógica condicional.

Características clave:

• Campos adaptativos: se muestran u ocultan según la selección del usuario

(por ejemplo, especialidad seleccionada filtra los doctores disponibles).

• Validaciones automáticas: formatos de correo, fechas válidas, campos

requeridos, etc.

• Integración con backend: al enviar los formularios, los datos son

almacenados directamente en Firebase Firestore o enviados al backend

web mediante API REST.

80
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ejemplo de formulario dinámico:

Ilustración 34: muestra la lógica de los formularios utilizados para registrar usuarios

 Navegación Intuitiva

Una buena experiencia de usuario depende de una navegación fluida y clara. Para

lograrlo, se empleó el sistema de rutas de Flutter y se estructuraron las vistas según

el rol del usuario (Paciente, Doctor, Director), con un enfoque de navegación

modular y centralizada.

81
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Herramientas y componentes utilizados:

• Navigator y Named Routes: para controlar el flujo entre pantallas.

• BottomNavigationBar para pacientes y doctores.

• Drawer (Menú lateral) para el rol de director.

• WillPopScope para manejar correctamente la navegación hacia atrás.

Organización por rol:

• Paciente: navegación sencilla entre cita, expediente, chat y perfil.

• Doctor: acceso directo a citas programadas, expediente clínico y

notificaciones.

• Director: panel administrativo con navegación lateral.

Ejemplo de navegación:

Ilustración 35: muestra la lógica para verificar el rol del usuario almacenado en los registros y redirigirlo a su
perfil correspondiente.

Beneficios obtenidos

Los beneficios obtenidos incluyen una experiencia de usuario optimizada, que evita

recargas innecesarias y ofrece interacciones guiadas y validadas para reducir

errores. Además, la modularidad y mantenibilidad del código mejoran gracias a la

separación por rutas y el uso de formularios reutilizables. Todo esto contribuye a

una mayor productividad del usuario final, al proporcionar flujos de trabajo claros,

lógicos y sencillos.

82
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Accesibilidad y Adaptabilidad

La accesibilidad y adaptabilidad son componentes clave para garantizar que la

aplicación móvil pueda ser utilizada por una amplia gama de usuarios, incluyendo

personas con diferentes capacidades y dispositivos con diversas características de

pantalla. En el desarrollo de este proyecto en Flutter, se implementaron diversas

prácticas enfocadas en hacer la aplicación inclusiva, funcional y adaptable.

Accesibilidad

Flutter ofrece soporte integrado para accesibilidad, lo cual facilita el desarrollo de

interfaces que cumplen con estándares como WCAG (Web Content Accessibility

Guidelines). En este proyecto se consideraron los siguientes aspectos:

Ejemplo:

Ilustración 36: muestra la lógica de personalización de textos, colores y controles accesibles.

Adaptabilidad

La adaptabilidad asegura que la aplicación se visualice correctamente en una

amplia gama de dispositivos (smartphones, tablets) y en distintas orientaciones de

pantalla. En este proyecto se aplicaron los principios de responsive design:

83
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Implementaciones clave:

Estas permiten que los widgets se ajusten dinámicamente según las dimensiones

del dispositivo, como el ancho, alto y orientación de la pantalla, lo que garantiza que

la experiencia del usuario sea óptima tanto en teléfonos móviles pequeños como en

tablets o dispositivos con pantallas más grandes. Este tipo de diseño es fundamental

para mantener la coherencia visual y funcionalidad sin importar el dispositivo que

se utilice.

Además, se incorporaron widgets flexibles y escalables, como Expanded, Flexible,

Wrap, GridView y ListView, que ofrecen una gran versatilidad para organizar el

contenido de forma eficiente y adaptable. Estos widgets permiten que los elementos

dentro de la interfaz crezcan, se contraigan o se redistribuyan según el espacio

disponible, lo que ayuda a evitar problemas de desbordamiento o espacios vacíos

en la pantalla.

Finalmente, se incorporó soporte para ambas orientaciones de pantalla, vertical y

horizontal, lo que permite que la aplicación funcione correctamente y mantenga su

estructura y usabilidad sin importar cómo el usuario sostenga el dispositivo. Esta

flexibilidad es especialmente útil en tablets y teléfonos, donde cambiar la orientación

puede ser común, garantizando así una experiencia fluida y sin interrupciones en

cualquier situación.

Ejemplo de layout adaptable:

84
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 37: muestra la implementación de herramientas responsive

Beneficios obtenidos

Los beneficios obtenidos en el proyecto son notables en varios aspectos clave. En

primer lugar, se logró una mejora significativa en la experiencia de usuario para

personas con discapacidades visuales o dificultades motrices, gracias a la

implementación de técnicas de accesibilidad y adaptabilidad que facilitan la

interacción con la aplicación. Esto no solo hace que la app sea más inclusiva, sino

que también amplía su potencial alcance y utilidad para un público más diverso.

Además, la aplicación se adapta correctamente a diferentes dispositivos y

resoluciones, lo que permite un mayor alcance y una experiencia consistente sin

importar si se utiliza en teléfonos, tablets u otros dispositivos. Esta adaptabilidad

asegura que más usuarios puedan acceder y utilizar la app de forma cómoda y

eficiente, independientemente de las características de su dispositivo.

Por último, el uso de estructuras escalables y componentes reutilizables facilita el

mantenimiento y la evolución del proyecto a largo plazo.

85
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Diseño Metodológico: Aplicación Web y Android para la Gestión de

Citas Médicas utilizando la Metodología Ágil SCRUM Estándar.

86
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

ANEXOS:

Aplicación web:

Esta es la página de inicio donde los usuarios pueden iniciar sesión o registrarse si

aún no tienen una cuenta.

Ilustración 38: Muestra la página de inicio de la aplicación web.

En esta imagen se muestra el proceso de registro de un nuevo usuario,

específicamente un paciente.

Ilustración 39: Muestra cómo se registra un usuario (Paciente) por primera vez.

87
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

En esta imagen, el usuario ya se ha registrado previamente y está iniciando sesión

en el sistema.

Ilustración 40: Muestra el inicio sesión del usuario creado

Acá se inició sesión y está en su perfil

Ilustración 41: Muestra la interfaz de inicio de sesión de un usuario (Paciente)

En esta imagen, el usuario está agendando una cita desde el apartado de citas.

Se puede observar que las horas marcadas en rojo indican los horarios que ya

tienen citas previamente agendadas.

Ilustración 42: Muestra cómo se agenda.

88
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

En esta imagen se muestran las especialidades médicas disponibles para

seleccionar al momento de agendar una cita.

Ilustración 43: Muestra las opciones de especialidades para agendar cita.

En esta imagen se muestra una cita que ya ha sido agendada. También se puede

ver un botón que permite acceder a los detalles de la cita.

Ilustración 44: Muestra que ya se agendo una cita:

Esta imagen corresponde al perfil del administrador, donde puede gestionar y

supervisar las diferentes funciones del sistema.

Ilustración 45: Muestra el perfil de usuario con rol de administrador.

Esta imagen muestra la lista de pacientes registrados en el sistema, junto con un

botón para ver los detalles de cada uno.

89
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Aquí se visualizan los detalles de un paciente que tiene una cita médica

confirmada.

Ilustración 47: Muestra los detalles de la cita de un paciente que tiene agendada una.

En esta imagen se muestran los detalles de un paciente que tiene una cita médica

pendiente de confirmación.

Ilustración 46: Muestra la lista de pacientes registrados en la página.

90
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 48: Muestra los detalles de la cita de un paciente con cita sin agendar o confirmar.

Esta imagen muestra la lista de doctores registrados en el sistema. Desde esta

sección es posible agregar un nuevo doctor, así como editar o eliminar sus

horarios y turnos asignados.

 Ilustración 49: Muestra la lista de doctores con los que se pueden agendar citas.

91
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

En esta imagen se muestra el proceso de creación de un nuevo doctor en el

sistema.

Ilustración 50: Muestra cómo se agrega un doctor desde el perfil administrador.

En esta sección se muestran las especialidades médicas disponibles. Es posible

crear nuevas especialidades o eliminar las existentes.

Ilustración 51: Muestra las especialidades que están disponibles para agendar citas:

92
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 53: selección de rol del usuario

APLICACIÓN ANDROID

Ilustración 52: Pantallas de introducción a la aplicación

93
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 54: vista del perfil del director

Ilustración 55: vista de inicio de sesión y registro.

94
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Ilustración 57:Pantalla de función de especialidades Ilustración 56: Pantalla de lista de doctores

Ilustración 59: Pantalla de asignación de horarios
Ilustración 58: vista citas registradas

95
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Conclusión

El desarrollo del sistema integral de gestión de citas médicas ha demostrado la

viabilidad y eficacia de una arquitectura cliente-servidor distribuida que integra

tecnologías modernas tanto en el ámbito web como móvil. A través del uso de

ASP.NET Core MVC en la parte web, se logró construir un sistema robusto,

escalable y seguro que permite la gestión eficiente de doctores, especialidades y

citas médicas, manteniendo una arquitectura clara mediante el patrón Modelo-Vista-

Controlador (MVC) y una correcta persistencia de datos con Entity Framework Core

y MySQL.

En el módulo móvil, desarrollado con Flutter y Dart, se priorizó la experiencia del

usuario final, brindando una aplicación intuitiva y adaptable que permite a los

pacientes y doctores interactuar fácilmente con el sistema. La utilización de Firebase

como backend en la nube proporcionó servicios clave como autenticación, base de

datos en tiempo real (Firestore), notificaciones (Firebase Cloud Messaging) y

almacenamiento, complementando así la funcionalidad local ofrecida por sqflite.

La integración entre ambas plataformas mediante API REST permitió una

comunicación fluida y segura entre el cliente móvil y el servidor web, garantizando

consistencia en los datos y sincronización eficiente. Además, la implementación de

control de acceso basado en roles (Paciente, Doctor, Director) contribuyó

significativamente a la seguridad del sistema y a la personalización de las

funcionalidades según el tipo de usuario.

En conjunto, el proyecto no solo ha cumplido con los objetivos planteados al inicio,

sino que también sienta las bases para futuras ampliaciones, tales como la

incorporación de historiales clínicos más completos, video consultas, inteligencia

artificial para asignación de médicos, y una interfaz de administración más

avanzada. De esta manera, se contribuye al mejoramiento de los procesos de

atención médica y se fortalece la transformación digital en el sector salud.

96
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Recomendaciones

Ampliar funcionalidades, considerando la integración de videollamadas para

consultas remotas y herramientas que faciliten la interacción entre paciente y doctor.

Implementar pruebas y monitoreo, mediante herramientas que permitan detectar

fallos, asegurar el rendimiento y facilitar el mantenimiento del sistema.

Desarrollar sesiones de capacitación para los usuarios finales a fin de facilitar la

adopción del sistema.

Garantizar la escalabilidad del sistema, considerando infraestructuras en la nube de

mayor rendimiento si aumenta el número de usuarios.

97
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Referencias bibliográficas:

Duarte Rocha, C. G. (2022). Desarrollo de una aplicación web de gestión de citas

médicas y asistencia previa a pacientes llamada “Medicall” en clínicas locales de la

ciudad de Juigalpa-Chontales utilizando la biblioteca React, durante el I semestre

del año 2022 [Proyecto de graduación, Universidad Nacional Autónoma de

Nicaragua, UNAN-Managua]. Repositorio Institucional UNAN-Managua.

http://repositorio.unan.edu.ni/id/eprint/20269

López Jara, K. S., & Valle Cárcamo, K. A. (202). Desarrollo de una aplicación web

para el control de citas y expediente médico de los pacientes de la cadena de

sucursales de Clínica San Benito [Monografía de licenciatura, Universidad Nacional

de Ingeniería]. Repositorio Institucional de la UNI.

https://ribuni.uni.edu.ni/view/creators/Valle_C%3DE1rcamo%3D3AKeyner_Asiel%

3D3A%3D3A.default.html

Fierro Mariño, J. S., & Rodríguez Espejo, L. M. (2024). Implementación de un

software para la gestión del historial clínico de un consultorio médico [Trabajo

integrador curricular, Universidad Tecnológica Ecotec]. Repositorio ECOTEC.

https://repositorio.ecotec.edu.ec/bitstream/123456789/1477/1/FIERRO%20MARI%

C3%91O%20JUAN%20STEEVEN%20%26%20RODRIGUEZ%20ESPEJO%20LU

IS%20MATEO.pdf

Revista Médica. (s.f.). Gestión de citas médicas: optimizar el tiempo de los pacientes

y médicos. https://revistamedica.com/gestion-citas-medicas-optimizar-tiempo/

Organización Panamericana de la Salud. (s.f.). Sistemas de Información para la

Salud (IS4H). Organización Panamericana de la Salud.

https://www3.paho.org/ish/index.php/es/

 Freeman, A., & Sanderson, P. (2021). Pro ASP.NET Core MVC 2. Apress.

https://doi.org/10.1007/978-1-4842-3191-4

 Esposito, D. (2020). Architecting Modern Web Applications with ASP.NET Core

and Microsoft Azure: Add Identity and Security to your App. Microsoft Press.

https://dotnet.microsoft.com

http://repositorio.unan.edu.ni/id/eprint/20269
https://ribuni.uni.edu.ni/view/creators/Valle_C%3DE1rcamo%3D3AKeyner_Asiel%3D3A%3D3A.default.html
https://ribuni.uni.edu.ni/view/creators/Valle_C%3DE1rcamo%3D3AKeyner_Asiel%3D3A%3D3A.default.html
https://repositorio.ecotec.edu.ec/bitstream/123456789/1477/1/FIERRO%20MARI%C3%91O%20JUAN%20STEEVEN%20%26%20RODRIGUEZ%20ESPEJO%20LUIS%20MATEO.pdf
https://repositorio.ecotec.edu.ec/bitstream/123456789/1477/1/FIERRO%20MARI%C3%91O%20JUAN%20STEEVEN%20%26%20RODRIGUEZ%20ESPEJO%20LUIS%20MATEO.pdf
https://repositorio.ecotec.edu.ec/bitstream/123456789/1477/1/FIERRO%20MARI%C3%91O%20JUAN%20STEEVEN%20%26%20RODRIGUEZ%20ESPEJO%20LUIS%20MATEO.pdf
https://revistamedica.com/gestion-citas-medicas-optimizar-tiempo/
https://dotnet.microsoft.com/

98
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

 Rahimi, A., & Reynolds, C. (2021). Entity Framework Core in Action. Manning

Publications.

 Date, C. J. (2019). An Introduction to Database Systems (8th ed.). Pearson

Education.

 Microsoft Docs. (2025). ASP.NET Core MVC overview.

https://learn.microsoft.com/en-us/aspnet/core/mvc/overview

 Microsoft Docs. (2025). Entity Framework Core documentation.

https://learn.microsoft.com/en-us/ef/core/

 Microsoft Docs. (2025). ASP.NET Core Web API. https://learn.microsoft.com/en-

us/aspnet/core/web-api/

 Google. (2025). Get started with Firebase Authentication on Flutter. Firebase

Documentation. https://firebase.google.com/docs/auth/flutter/start

Martin, R. C. (2018). Clean Architecture: A Craftsman's Guide to Software -

Structure and Design. Prentice Hall.

Sommerville, I. (2020). Software Engineering (10th ed.). Pearson.

https://learn.microsoft.com/en-us/aspnet/core/mvc/overview
https://learn.microsoft.com/en-us/ef/core/
https://learn.microsoft.com/en-us/aspnet/core/web-api/
https://learn.microsoft.com/en-us/aspnet/core/web-api/

99
 2025: 46/19 ¡Siempre más allá avanzamos en la Revolución!

Cronograma de actividades

	falsa portada
	T

