UNIVERSIDAD NACIONAL AUTÓNOMA DE NICARAGUA, LEÓN.

FACULTAD DE CIENCIAS Y TECNOLOGÍA

DEPARTAMENTO DE MATEMÁTICA, ESTADÍSTICA Y ACTUARIALES INGENIERÍA ESTADÍSTICA.

MONOGRAFÍA PARA OPTAR AL TÍTULO DE GRADO EN INGENIERÍA ESTADÍSTICA.

Tema: Pronóstico de producción agroexportable para los rubros: banano, ajonjolí, caña de azúcar y café en Nicaragua, de 1990 a 2017.

Autoras: Br. Idelia Gómez Tinoco.

Br. Dania Elvira Herradora Argeñal.

Br. Lisdy Patricia Lira Rodríguez.

Tutor: M.Sc. William Milton Carvajal Herradora.

León, Nicaragua, 7 de junio del 2021.

Agradecimientos.

Agradecemos a Dios por la salud y bienestar que fueron necesarios para optar a este grado académico.

Expresamos profunda gratitud a nuestras familias, por su confianza e inquebrantable apoyo, depositado en nosotras en todo el proceso de esta carrera, gracias al profesor Milton Carvajal por su ayuda continua, paciencia, motivación y conocimiento transmitido, para lograr la culminación de este estudio.

Contenido.

١.	Introducción	1
II.	Antecedentes	1
III.	Planteamiento de problema.	3
IV.	Justificación	4
٧.	Objetivos	6
VI.	Marco teórico.	7
6	S.1 El Comercio	7
	6.1.1 Clasificación del comercio.	7
6	S.2 Exportación	7
6	6.3 El comercio exterior en Nicaragua	7
6	6.4 Productos agrícolas	8
6	6.5 Ciclo agrícola	8
	6.5.1 Tipos de siembra durante el ciclo agrícola	8
6	S.6 Agroexportables de Nicaragua	8
	6.6.1 Banano	9
	6.6.2 Ajonjolí	9
	6.6.3 Caña de Azúcar	. 10
	6.6.4 Café	11

6	6.7 Análisis exploratorio	11
6	S.8 Serie de tiempo	12
	6.8.1 Componentes de una serie temporal.	12
	6.8.2 Datos faltantes y métodos de imputación en series de tiempo	13
	6.8.3 Predicción con modelos ARIMA	13
	6.8.4 Modelos estacional ARIMA – SARIMA	13
	6.8.4 Diagnosis del modelo y predicción	14
VII.	Diseño metodológico	15
7	7.1 Tipo y alcance de investigación	15
	7.1.1 Diseño de investigación.	15
7	7.2 Técnica de recolección de datos y procesamiento de la información	15
7	7.3 Técnicas de análisis de datos	16
VIII	I. Resultados	17
8	3.1 Rubro banano	17
8	3.2 Rubro ajonjolí	24
8	3.3 Rubro caña de azúcar	31
8	3.4 Rubro café	38
IX.	Conclusiones	45
Χ.	Recomendaciones	46
XI.	Bibliografía	47

XII. A	NEXOS 4	19
Ane	exo 1: Tabla de producción nacional de exportación de banano, desde 199) 0
has	ta 20175	50
Ane	exo 2: Tabla de producción nacional de exportación de ajonjolí, desde 199) 0
has	ta 20135	52
Ane	exo 3: Tabla de producción nacional para exportación de caña de azúca	ır,
des	de 1990 hasta 2017 5	54
Ane	exo 4: Tabla de producción nacional para exportación según ciclo agrícola d	ək
café	é desde 1990 hasta 20135	56
Ane	exo 5: Prueba de homogeneidad de varianzas en rubro banano5	58
Ane	exo 6: Prueba de normalidad en rubro banano 5	58
Ane	exo 7: Gráfico de prueba de Shapiro- Wilk en rubro banano5	59
Ane	exo 8: Gráficos de autocorrelación simple y parcial, rubro banano5	59
Ane	exo 9: Prueba Ljung-box en rubro banano6	30
Ane	exo 10: Predicción rubro banano desde 2018 a 20226	30
Ane	exo 11: Medidas de error en el modelo del rubro banano6	32
Ane	exo 12: Prueba de homogeneidad de varianzas en rubro ajonjolí6	32
Ane	exo 13: Prueba de normalidad en rubro ajonjolí6	3
Ane	exo 14: Gráfico de prueba de Shapiro- Wilk de rubro ajonjolí6	3
Ane	exo 15: Gráficos de autocorrelación simple y parcial, rubro ajonjolí 6	34
Ane	exo 16: Prueba Ljung-box, rubro ajonjolí6	34

Anexo 17: Predicción rubro ajonjolí desde 2014 a 2022	65
Anexo 18: Medidas de error en el modelo del rubro ajonjolí6	67
Anexo 19: Prueba de homogeneidad de varianzas en rubro caña de azúcar 6	67
Anexo 20: Prueba de normalidad en rubro caña de azúcar	67
Anexo 21: Gráfico de prueba de Shapiro- Wilk en rubro caña de azúcar 6	68
Anexo 22: Gráficos de autocorrelación simple y parcial, rubro caña de azúcar. 6	68
Anexo 23: Prueba Ljung-box, rubro banano6	69
Anexo 24: Predicción rubro caña de azúcar desde 2018 a 20226	69
Anexo 25: Medidas de error en el modelo del rubro caña de azúcar	70
Anexo 26: Prueba de homogeneidad de varianzas en rubro café	70
Anexo 27: Prueba de normalidad en rubro café	71
Anexo 28: Gráfico de prueba de Shapiro- Wilk en rubro café	71
Anexo 29: Gráficos de autocorrelación simple y parcial, rubro café	72
Anexo 30: Prueba Ljung-box, rubro café	72
Anexo 31: Predicción rubro café desde 2014 a 2022	72
Anexo 32: Medidas de error en el modelo del rubro café	74

Contenido de figuras.

FIGURA 1. BANANO DE EXPORTACIÓN9
FIGURA 2. AJONJOLÍ DE EXPORTACIÓN10
FIGURA 3. CAÑA DE AZÚCAR PARA EXPORTACIÓN10
FIGURA 4. CAFÉ DE EXPORTACIÓN11
FIGURA 5. BARRAS DE ERROR DE PRODUCCIÓN NACIONAL DE BANANO DE
1990 A 201717
FIGURA 6. DIAGRAMA DE CAJA DE PRODUCCIÓN NACIONAL DE BANANO DE
1990 A 201718
FIGURA 7. ÁRBOL DE CLASIFICACIÓN DE PRODUCCIÓN NACIONAL DE
BANANO DE 1990 A 201718
FIGURA 8. VALORES IMPUTADOS DE LA SERIE ORIGINAL DE PRODUCCIÓN
NACIONAL DE BANANO DE 1990 A 201719
FIGURA 9. VALORES ATÍPICOS AJUSTADOS DE LA SERIE PRODUCCIÓN
NACIONAL DE BANANO DE 1990 A 201720
FIGURA 10. SERIE DE TIEMPO LOGARÍTMICA AJUSTADO EN TENDENCIA
POR MÉTODO DE MÍNIMO CUADRADOS ORDINARIOS DE LA
PRODUCCIÓN NACIONAL DE BANANO DE 1990 A 201720
FIGURA 11. COMPONENTE ESTACIONAL POR MES EN RESIDUOS DE SERIE
TRANSFORMADA POR LOGARITMOS DE LA PRODUCCIÓN NACIONAL DE
BANANO DE 1990 A 2017 CON AJUSTE EN TENDENCIA21
FIGURA 12. PERIODOGRAMA ACUMULADO PARA RESIDUOS EN SERIE
ORIGINAL Y PERIODOGRAMA ACUMULADO PARA RESIDUOS EN SERIE
AJUSTADA POR EL MODELO ARIMA-SARIMA22

FIGURA 13. PRONÓSTICO DE PRODUCCIÓN NACIONAL DE BANANO DE 1990
HACIA EL 2022
FIGURA 14. PRUEBA DE LJUNG-BOX PARA EL RUBRO BANANO23
FIGURA 15. BARRAS DE ERROR DE PRODUCCIÓN NACIONAL DE AJONJOLÍ
DE 1990 A 201324
FIGURA 16. DIAGRAMA DE CAJA DE PRODUCCIÓN NACIONAL DE AJONJOLÍ
D 1990 A 2013
FIGURA 17. ÁRBOL DE CLASIFICACIÓN DE PRODUCCIÓN NACIONAL DE
AJONJOLÍ DE 1990 A 201325
FIGURA 18. VALORES IMPUTADOS DE LA SERIE ORIGINAL DE PRODUCCIÓN
NACIONAL DE AJONJOLÍ DE 1990 A 201326
FIGURA 19. VALORES ATÍPICOS AJUSTADOS DE LA SERIE PRODUCCIÓN
NACIONAL DE AJONJOLÍ DE 1990 A 201327
FIGURA 20. SERIE DE TIEMPO AJUSTADA EN TENDENCIA POR MÉTODO DE
MÍNIMO CUADRADOS ORDINARIOS DE LA PRODUCCIÓN NACIONAL DE
AJONJOLÍ DE 1990 A 201327
FIGURA 21. COMPONENTE ESTACIONAL POR MES EN RESIDUOS DE LA
PRODUCCIÓN NACIONAL DE AJONJOLÍ DE 1990 A 2013 CON AJUSTE EN
TENDENCIA
FIGURA 22. PERIODOGRAMA ACUMULADO PARA RESIDUOS EN SERIE
ORIGINAL Y PERIODOGRAMA ACUMULADO PARA RESIDUOS EN SERIE
AJUSTADA POR EL MODELO ARIMA-SARIMA29
FIGURA 23. PRONÓSTICO DE PRODUCCIÓN NACIONAL DE AJONJOLÍ DE
1990 HACIA EL 202230

FIGURA 24. PRUEBA DE LJUNG-BOX PARA EL RUBRO AJONJOLÍ30
FIGURA 25. BARRAS DE ERROR DE PRODUCCIÓN NACIONAL DE CAÑA DE
AZÚCAR DE 1990 A 201731
FIGURA 26. DIAGRAMA DE CAJA DE PRODUCCIÓN NACIONAL DE CAÑA DE
AZÚCAR DE 1990 A 201732
FIGURA 28. VALORES IMPUTADOS DE LA SERIE ORIGINAL DE PRODUCCIÓN
NACIONAL DE CAÑA DE 1990 A 201733
FIGURA 29. VALORES ATÍPICOS AJUSTADOS DE LA SERIE PRODUCCIÓN
NACIONAL DE CAÑA DE 1990 A 201734
FIGURA 30. SERIE DE TIEMPO AJUSTADA EN TENDENCIA POR MÉTODO DE
MÍNIMOS CUADRADOS ORDINARIOS DE LA PRODUCCIÓN NACIONAL DE
CAÑA DE AZÚCAR DE 1990 A 201734
FIGURA 31. COMPONENTE ESTACIONAL POR MES EN RESIDUOS DE LA
PRODUCCIÓN NACIONAL DE CAÑA DE AZÚCAR DE 1990 A 2017 CON
AJUSTE EN TENDENCIA35
FIGURA 32. PERIODOGRAMA ACUMULADO PARA LOS RESIDUOS EN SERIE
ORIGINAL Y PERIODOGRAMA ACUMULADO PARA RESIDUOS EN SERIE
AJUSTADA POR EL MODELO ARIMA-SARIMA36
FIGURA 33. PRONÓSTICO DE PRODUCCIÓN NACIONAL DE CAÑA DE
AZÚCAR DE 1990 HACIA EL 2022
FIGURA 34. PRUEBA DE LJUNG-BOX PARA EL RUBRO CAÑA DE AZÚCAR.37
FIGURA 35. BARRAS DE ERROR DE PRODUCCIÓN NACIONAL DE CAFÉ DE
1990 A 201338

FIGURA 36. DIAGRAMA DE CAJA DE PRODUCCIÓN NACIONAL DE CAFÉ DE
1990 A 201339
FIGURA 37. ÁRBOL DE CLASIFICACIÓN DE PRODUCCIÓN NACIONAL DE
CAFÉ DE 1990 A 2013
FIGURA 38. VALORES IMPUTADOS DE LA SERIE ORIGINAL DE PRODUCCIÓN
NACIONAL DE CAFÉ DE 1990 A 2013. FUENTE: ELABORACIÓN PROPIA Y
DATOS EXTRAÍDOS DEL BCN, 201439
FIGURA 38. VALORES IMPUTADOS DE LA SERIE ORIGINAL DE PRODUCCIÓN
NACIONAL DE CAFÉ DE 1990 A 2013 40
FIGURA 39. VALORES ATÍPICOS AJUSTADOS DE LA SERIE PRODUCCIÓN
NACIONAL DE CAFÉ DE 1990 A 2013
FIGURA 40. SERIE DE TIEMPO AJUSTADA EN TENDENCIA POR MÉTODO
MÍNIMOS CUADRADOS ORDINARIOS DE LA PRODUCCIÓN NACIONAL DE
CAFÉ DE 1990 A 2013
FIGURA 41. COMPONENTE ESTACIONAL POR MES EN RESIDUOS DE SERIE
DE LA PRODUCCIÓN NACIONAL DE CAFÉ DE 1990 A 2013 CON AJUSTE
EN TENDENCIA42
FIGURA 42. PERIODOGRAMA ACUMULADO PARA RESIDUOS EN SERIE
ORIGINAL Y PERIODOGRAMA ACUMULADO PARA RESIDUOS EN SERIE
AJUSTADA POR EL MODELO ARIMA-SARIMA43
FIGURA 43. PRONÓSTICO DE PRODUCCIÓN NACIONAL DE CAFÉ DE 1990
HACIA 202244
FIGURA 44. PRUEBA DE LJUNG-BOX PARA EL RUBRO CAFÉ 44

Contenido de tablas.

TABLA	1. MODELO	ARIMA	ESTACIONAL	EN RUBRO	BANANO	. 22
TABLA	2. MODELO	ARIMA	ESTACIONAL	EN RUBRO	AJONJOLÍ	. 29
TABLA	3. MODELO	ARIMA	ESTACIONAL	EN RUBRO	CAÑA DE AZÚCAR	. 36
TABLA	4. MODELO	ARIMA	ESTACIONAL	EN RUBRO	CAFÉ	. 43

Resumen.

La metodología de los modelos autorregresivos integrados de media móvil (ARIMA), fue empleada en este estudio con el objetivo de pronosticar mediante series de tiempo, la producción agroexportable de los rubros: banano, ajonjolí, caña de azúcar y café en Nicaragua, de 1990 hacia 2022, para encontrar el mejor ajuste de las series y obtener predicciones precisas.

Los pronósticos se realizaron empleando los modelos ARIMA(1, 1, 1) SARIMA(2, 0, 0) [12] con derrape para banano, ARIMA(2, 1, 2) SARIMA(0, 0, 2) [8] para ajonjolí, ARIMA (1, 0,1) SARIMA(0, 1,2) [7] con derrape para caña de azúcar y ARIMA (5, 1,0) SARIMA(0, 0,1) [6] para café.

Los resultados indican que en los próximos años la producción de banano se incrementará sostenidamente, mientras que las producciones de caña de azúcar presentarán un leve decrecimiento para los años futuros. El café y ajonjolí tendrán un decrecimiento en sus producciones. Por consiguiente, los pronósticos obtenidos en esta investigación pueden ser utilizados en la toma de decisiones de producción e inversión de los productos agroexportables de Nicaragua

I. Introducción.

El desarrollo de la producción agrícola origina empleos e ingresos además de demandas en bienes de consumo y servicios rurales, es decir contribuye al crecimiento económico (Hayami y Ruttan, 1990). Invertir en la agricultura para construir un futuro mejor, evidencia que los agricultores son grandes inversores en el sector agrícola, por lo tanto, sus decisiones deben ocupar un lugar fundamental en toda estrategia destinada a la mejora de inversiones agrícolas (FAO, 2012). Según el Banco Central de Nicaragua (2017): la capacidad agroalimentaria nacional se logra potencializar, mediante la inserción en los mercados de exportación, al cumplir con los requisitos que estos demandan, asimismo se fomenta la competitividad, sin someter el patrimonio natural y productivo de los agricultores nacionales, de manera que, en términos de inversión y expansión de la oferta nacional, esta potencialización es considerada positiva.

Nicaragua desde tiempos históricos, debido a sus condiciones ambientales y agronómicas, se ha introducido al comercio exterior, esto de acuerdo con estudios de análisis de mercado internacional, del Banco Central de Nicaragua (2019), la nación se destaca por exportar los rubros agrícolas: banano, ajonjolí, caña de azúcar y café, por consiguiente es importante conocer el comportamiento mediante series de tiempo de la producción de exportación, puesto que invertir en esta, genera riesgos a causa de factores influyentes en el proceso de siembra y cosecha, este estudio descriptivo además de predictivo de corte longitudinal, extenderá los datos históricos hacia el futuro, para conocer, proyectar y entender los cambios interanuales de los cuatro rubros agroexportables mencionados, aplicando técnicas de estadísticas avanzadas en series de tiempo.

II. Antecedentes.

Con el fin de apoyar el enfoque metodológico aplicado en esta tesis, a partir del contexto estadístico predictivo, fundamentado en series de tiempo y en estadística descriptiva de años históricos, asimismo desde la perspectiva

económica, a través de temáticas que profundizan en los rubros agroexportables objeto de este estudio, se presenta a continuación los resultados y conclusiones más relevantes de trabajos investigativos:

La Organización Internacional del Café (2020) en su informe Coffe Market Report, muestra que las exportaciones totales de los países exportadores a todos los destinos ascendieron a 10.47 millones de sacos en febrero de 2021, frente a 11.16 millones de sacos en febrero de 2020. Las exportaciones acumuladas de marzo de 2020 a febrero de 2021 se estiman provisionalmente en 128.57 millones de sacos frente a los 130.97 millones de sacos registrados de marzo de 2019 a febrero de 2020.

Por otro lado, variando de rubro, en la universidad Veracruzana (México), Ramírez et al (2006), realizaron el estudio titulado "Análisis de series de tiempo en el pronóstico de la producción de caña de azúcar" con la finalidad de generar un modelo de series de tiempo que sirviese para pronosticar la zafra 2006-2007 del Ingenio Independencia. Entre sus resultados aplicaron modelización de Box-Jenkins y autorregresivo integrado de medias móviles ARIMA(1, 2, 0), se pronosticó que la zafra 2006-2007 sería de 11,974 toneladas de azúcar, en contraste con la producción real de 12,736 toneladas, indicaron que el pronóstico realizado con el modelo es preciso en un 94%.

Por otra parte, en un estudio realizado para la revista estadounidense de ciencias agrícolas y biológicas gracias a Hossain et al (2016), titulado "Forecasting of Banana Production in Bangladesh, of 1972 to 2013" con el objetivo de pronosticar la producción de banano en Bangladesh, identificaron el modelo Box-Jenkins ARIMA(0, 2, 1), como el modelo adecuado por cumplir con la predicción de la producción de banano, debido a que los errores del modelo ajustado se distribuyeron de forma normal.

A nivel nacional, según informe realizado por el Instituto Interamericano de Cooperación para la Agricultura (IICA), Ministerio Agropecuario y Forestal (MAGFOR) y la Agencia de Cooperación Internacional del Japón (JICA), titulado

"Cadena Agroindustrial de ajonjolí de Nicaragua, año 2004", que tuvo como objetivo principal caracterizar los eslabones y agentes de la cadena de ajonjolí, y aquellos factores claves que inciden en su sostenibilidad y competitividad, además describe y tipifica la estructura global de la cadena del ajonjolí en Nicaragua. En sus resultados mostraron que los precios bajos de exportación influyeron en la caída de la producción y de las exportaciones nacionales. El periodo de 1990 a 1997 incrementó, ya que en 1997 se obtuvo la mayor producción de ajonjolí con 326.30 miles de quintales, en el año 2001 la producción fue de 89.40 miles de quintales, sin embargo, de 1998 a 2002 las cantidades de producción disminuyeron.

El gabinete de producción consumo y comercio de Nicaragua, indicó que la producción de exportación de banano, obtenidas en 2015 fueron de 4.1 millones de cajas de 42 libras y en el 2019 llegó a 5.7 millones, reflejando un 40% de crecimiento.

El comité nacional de productores de azúcar de Nicaragua en Centroamérica proyectó cerrar el ciclo 2017-2018 con una producción superior a los 17 millones de quintales de azúcar, lo que significaría un aumento de 10% respecto al ciclo previo.

De acuerdo con las estadísticas del Centro de Trámites de las Exportaciones, la cosecha cafetalera 2011-2012 fue de 2.3 millones de quintales, muy por encima de los 2.09 millones de la cosecha anterior, y 400 mil quintales por arriba de las proyecciones previas sobre la de quintales.

III. Planteamiento de problema.

Para invertir en la agricultura a nivel mundial los países procuran lograr en la sociedad y en la productividad agrícola tres beneficios: i) crecimiento económico que conlleva a la reducción de la pobreza, ii) seguridad alimentaria y nutricional, iii) sostenibilidad ambiental, en cambio los agricultores invierten: dinero, esfuerzos o tiempo, para alimentar a sus familias, aumentar y diversificar sus ingresos y hacer crecer su patrimonio. (Skoet, 2012)

El factor común que une ambos entornos con el comercio exterior es el aumento de los beneficios y reducción de riesgos económicos. Desde el enfoque macroeconómico, para lograr el aumento de beneficios y reducción de riesgos del comercio exterior nacional, por medio de los rubros agroexportables, ya previamente mencionados, es necesario saber que decisiones aprobará el productor, con el propósito de optimizar el área productiva, ya que este tiene la responsabilidad técnica y económica, en la producción de los cultivos.

Ante la incertidumbre con respecto a que decisión adoptar en el futuro, que reduzca los riesgos de pérdida productiva, al productor de igual modo al país, surge la siguiente interrogante: ¿Cómo será la producción agroexportable en el año 2022 de los rubros banano, ajonjolí, caña de azúcar y café?

IV. Justificación.

La Organización de las Naciones Unidas para la Agricultura y la Alimentación (2015), describe a Nicaragua como un país que tiene, uno de los porcentajes más elevados de suelo para uso agrícola de Centroamérica. Los productos alimenticios constituyen el 80% de las exportaciones totales de Nicaragua. Se espera que la región siga siendo un importante proveedor de diversos productos básicos alimenticios.

En un país en proceso de desarrollo, la exportación de productos agrícolas proporciona un gran aporte de estabilidad social y económica. Según el informe trimestral del PIB del Banco Central de Nicaragua (2020), las exportaciones registraron un crecimiento de 11.6%, resultado de aumentos, tanto en bienes, como en servicios exportados. La agricultura creció 1.6% explicado por la mayor generación de valor agregado en los cultivos de banano, café, entre otros productos.

El Banco Central de Nicaragua en su informe cincuenta años de estadística macroeconómica (1960-2009), proporcionó datos preliminares de las cantidades de producción agrícola, que son exportadas por nuestro país, siendo las más sobresalientes; caña de azúcar con 5,159.4 miles de toneladas cortas, café con 2,028.5 miles de quintales oro, banano con 2,440.7 miles de cajas de 42 libras y

ajonjolí con 112.3 miles de quintales naturales, todas estas en el ciclo agrícola 2009 a 2010.

Por consiguiente, es necesario estudiar la estructura temporal o dinámica de los datos, que permitan aplicar las técnicas estadísticas correspondientes, para modelizar el comportamiento de las producciones de los productos agroexportables, a fin de generar las previsiones que se alcanzarán en el futuro. Con el análisis de datos se realizarán pronósticos que sirvan de contraste y que aporten al área de investigación cuantitativa del país, la implementación de medidas que ayuden a contrarrestar y reducir los riesgos, que la producción agrícola presenta. Esta vulnerabilidad según la FAO (2012), es debido a su naturaleza estacional o cíclica a causa de fenómenos naturales como las seguías, las plagas y las enfermedades.

V. Objetivos.

Objetivo general:

Pronosticar mediante series de tiempo, la producción agroexportable de los rubros: banano, ajonjolí, caña de azúcar y café en Nicaragua, de 1990 a 2022.

Objetivos específicos:

- Describir las características de la producción agrícola de exportación de: banano, ajonjolí, caña de azúcar y café, en el transcurso interanual por medio de estadística descriptiva e inferencial.
- Identificar el comportamiento de las series temporales de los cuatro rubros de tal manera que se aplique la técnica de predicción conveniente.
- Analizar de forma individual los pronósticos obtenidos de cada rubro hacia el año 2022.

VI. Marco teórico.

Para fundamentar esta investigación se puntualiza de forma sintetizada las bases conceptuales sobre el tema objeto de estudio:

6.1 El Comercio.

El comercio es el nexo económico entre producción, consumo e inversión, en sentido funcional, se trata del intercambio de bienes económicos mediante la transacción de mercancía por dinero o por cambio en especies (LaFuente, 2012).

6.1.1 Clasificación del comercio.

Partiendo del ámbito geográfico, el comercio se divide en comercio interior y exterior. El comercio interior abarca el conjunto de actividades mercantiles llevado a cabo a escala interna o nacional (LaFuente, 2012). Por otro lado, se define al comercio exterior como la relación de intercambio comercial entre dos países (Valenzuela Millán, 2014).

6.2 Exportación.

Se define como exportación de bienes y servicios a "la venta, trueque o donaciones de bienes y servicios de los residentes a los no residentes" (INEGI, 2013).

6.3 El comercio exterior en Nicaragua.

Nicaragua ha incrementado sus exportaciones en un 14% entre enero y mayo del año 2020 según el reciente informe de la comisión económica para América Latina y el Caribe (CEPAL, 2020).

En los últimos años el país ha centrado sus exportaciones en continentes con mercados potenciales como: América del norte, América del Sur, América Central, Asia y Europa. De estos continentes se destacan tres principales mercados "Estados Unidos, Venezuela, Europa" (Tucker, 2017).

Según el informe de oferta exportable actual y potencial MIFIC, CNPE Y BID: El comercio exterior de Nicaragua está compuesto mayoritariamente de exportaciones agrícolas, el intercambio que realiza el país está fuertemente vinculado a cultivos que tradicionalmente se han considerado de exportación (agroexportables) esto es debido a que Nicaragua posee en abundancia recursos naturales.

6.4 Productos agrícolas.

Los productos agrícolas son artículos en bruto que no han sido transformados o procesados y que se encuentran en su estado primario, son destinados al consumo humano, la alimentación de animales, la producción de energía y la industria (FAO, OMS, 2001).

6.5 Ciclo agrícola.

Es el período establecido para realizar los tipos de siembra (INIDE, 2008).

6.5.1 Tipos de siembra durante el ciclo agrícola.

Primera: Comprende la siembra que se realiza principalmente en los meses de abril y mayo, su nombre se debe a que la siembra se efectúa con las primeras lluvias para que la cosecha coincida con la "canícula", periodo que generalmente no llueve.

Postrera: Corresponde a la siembra que se realiza entre el primero de agosto y el 31 de octubre.

Apante: Incluye la siembra que se realiza a partir del primero de noviembre (BCN, 2004).

6.6 Agroexportables de Nicaragua.

Los rubros tales como: ajonjolí, algodón, banano, café, caña de azúcar y tabaco. Son rubros tradicionales de producción nicaragüense de exportación (INIDE, 2008).

De los rubros mencionados, el algodón dejó de producirse a finales de los años 80 del siglo XX, tras resultar insostenible, debido al daño causado al medio ambiente por el abuso de pesticidas (FAO, 2013) y el tabaco es una planta comercial

no comestible, este mantiene un significado tanto positivo, por su uso religioso y poderes médicos beneficiosos, como negativo, por ser formador de hábito y droga (BCN, 2005). Debido a que estos rubros no son alimenticios no forman parte de esta investigación.

6.6.1 Banano.

Es un cultivo permanente de producción continua, empieza a producir cuando tiene un año de edad y después que se obtiene la cosecha se tala para que la planta rebrote y vuelva a producir. Por ello, en todos los meses del año se registra la misma área en producción, que coincide con el total de área cosechada anual, produciéndose cambios mes a mes solamente en la producción obtenida. La producción está medida en miles de cajas de 42 libras de peso (BCN, 2004).

Figura 1. Banano de exportación.

Fuente: Asociación de Productores y Exportadores de Nicaragua. (APEN, 2016)

6.6.2 Ajonjolí.

Es un cultivo temporal con un ciclo de crecimiento menor a un año y que se vuelve a sembrar en cada campaña. En Nicaragua se cultiva en dos épocas de siembra, primera o siembra de humedad y postrera, que es cuando se registra la mayor cantidad de área sembrada. El ciclo agrícola se inicia en el mes de julio y termina en enero del siguiente año.

La producción esta medida en miles de quintales de ajonjolí natural. Para convertirla a producción oro se multiplica por 0.76, esto debido a la pérdida de peso en todo el proceso de descortezado (BCN, 2004).

Figura 2. Ajonjolí de exportación.

Fuente: Centro de Exportaciones e inversiones Nicaragua. (CEI, 2013)

6.6.3 Caña de Azúcar.

La caña de azúcar es de aprovechamiento plurianual, se corta cada doce meses y el ciclo de vida de la plantación puede ser de hasta cinco años. La zafra inicia en noviembre de un año y termina en junio del año siguiente. La producción de caña se mide en miles de toneladas cortas (1 tonelada corta es equivalente a 20 quintales) (BCN, 2004).

En Nicaragua las zonas de principal cultivo de caña de azúcar se ubican en el Pacífico, los ingenios ubicados en el departamento de Chinandega San Antonio, Monte Rosa; presentan en conjunto la mayor producción de caña de azúcar del país, seguido del ingenio Benjamín Zeledón ubicado en Rivas y finalmente el ingenio Montelimar ubicado en Managua (Proyecto IICA/EPAD, 2003).

Figura 3. Caña de azúcar para exportación

Fuente: Montelimar S.A, 2017.

6.6.4 Café.

Es un cultivo permanente que inicia su período de producción a los cuatro años de edad y durante la cosecha o recolección no es necesaria la destrucción total de la planta, por esto el área cosechada es la misma durante los meses del ciclo productivo que inicia en octubre de un año y termina en septiembre del siguiente, la producción de este rubro es medida en miles de quintales oro (1 quintal oro equivale a 18 quintales uva) (BCN, 2004).

Las zonas óptimas agroclimáticas de este cultivo están ubicadas principalmente en la zona norte (Estelí, Madriz y Nueva Segovia) y norte-central (Jinotega y Matagalpa). En menores áreas se cultiva el café en las zonas altas del Pacífico y Boaco (CNPE, MIFIC, Javaland, 2014).

Figura 4. Café de exportación.

Fuente: Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO, 2013).

6.7 Análisis exploratorio.

El análisis exploratorio de datos (EDA) es un enfoque para el análisis de datos que emplea una variedad de técnicas La mayoría de las ellas son de naturaleza gráfica con algunas técnicas cuantitativas. La razón de la gran dependencia de los gráficos es explorar con la mente abierta, dando a los analistas un poder incomparable para para obtener información nueva, a menudo insospechada, sobre los datos (Hanbook, 2012).

6.8 Serie de tiempo.

Una serie temporal es una secuencia cronológica de observaciones sobre una variable en particular. Por lo general, las observaciones se realizan a intervalos regulares (horas, días, meses, años). Un análisis de series de tiempo se compone de dos pasos: (1) la construcción de un modelo que representa una serie de tiempo, y (2) utilización del modelo para predecir los valores futuros de dicha variable (García, 2016).

Una serie de tiempo es matemáticamente definida como $\{x(t_1), x(t_2), ..., x(t_n)\} = \{x(t): t \in T \subseteq R\}$ con $x(t_j)$ el valor de la variable x en el instante de t_j . Si $T \subseteq Z$ se dice que la serie de tiempo es discreta y si $T \subseteq R$ se dice que la serie de tiempo es continúa. Cuando $t_{j+1} - t_j = k$ para todo i = 1, ..., n-1 se dice que la serie es equiespaciada, en caso contrario será no equiespaciada (Bahamonde, 2013).

6.8.1 Componentes de una serie temporal.

En el estudio clásico de las series temporales se considera que el comportamiento de la serie es fruto de la participación de cuatro componentes, la tendencia, las variaciones cíclicas, las variaciones estacionales y las variaciones aleatorias. Al observar cada componente por separado se define efectivamente el patrón que presenta la serie. Para empezar la serie se descompone por su tendencia (T): Es una componente de la serie que refleja su evolución a largo plazo. Esta componente, en el conjunto de toda la serie, puede ser de naturaleza estacionaria o constante, de naturaleza lineal, de naturaleza exponencial, u otras posibilidades. Luego por la componente cíclica (C): Esta recoge las oscilaciones periódicas. Estas oscilaciones no son regulares y solamente es caracterizable cuando se disponga de una larga historia de la serie, y en la práctica es difícil de ajustar lo cual no significa que dicha componente no esté condicionando el comportamiento de esta. Después por el componente estacional (S): este recoge oscilaciones que se producen en períodos de repetición iguales o inferiores a un año, originalmente en series con datos mensuales; pero podemos encontrarnos con estacionalidad distinta a la mensual como la semanal, diaria u horaria. Por último,

el componente *aleatorio o irregular (I):* recoge las fluctuaciones debido a la ocurrencia de eventos imprevisibles; es por definición imprevisible y actúa en cualquier serie temporal en mayor o menor medida (García, 2016).

6.8.2 Datos faltantes y métodos de imputación en series de tiempo.

Los datos faltantes se convierten en el primer obstáculo al diseñar modelos predictivos, ya que la mayoría de los métodos estadísticos se basan en datos completos sin valores faltantes, este enfoque de manejo de valores perdidos se llama Imputación. En las series de tiempo es necesario tener en cuenta las características que están presentes, para desarrollar una estrategia adecuada y eficiente al tratar con datos faltantes (Rantou, 2017).

6.8.3 Predicción con modelos ARIMA.

Estos predictores se obtienen calculando valores esperados de las observaciones futuras, condicionadas a los datos observados. Los operadores estacionarios AR y MA, determinan la predicción a corto plazo. A continuación, la definición formal: sea T la longitud de una serie temporal, $z_T = (z_1, ..., z_T)$, y se desea prever un valor futuro k > 0 periodos delantes z_{T+k} . Llamemos $\hat{z}_T(k)$ a un predictor de z_{T+k} obteniendo como función de los T valores observados, es decir, con origen de la predicción en T (Peña, 2005).

6.8.4 Modelos estacional ARIMA-SARIMA.

Los modelos ARIMA son capaces de modelar una amplia gama de datos estacionales. La parte estacional del modelo consta de términos que son similares a los componentes no estacionales del modelo, donde su estructura matemática es:

$$ARIMA(p, d, q)(P, D, Q)_m$$

Dónde m = número de observaciones por año. Se usa la notación en mayúsculas para las partes estacionales del modelo y la notación en minúsculas para las partes no estacionales del modelo (Hyndman y Athanasopoulos, 2018).

6.8.4 Diagnosis del modelo y predicción.

La diagnosis del modelo requiere comprobar que las hipótesis básicas realizadas respecto a los residuos son ciertas. Estos deben tener: (1) media marginal igual a cero; (2) varianza marginal constante; (3) falta de correlación para cualquier retardo; (4) distribución normal. Además, estas propiedades deben verificarse no solo respecto a las distribuciones marginales sino también a las distribuciones condicionadas a cualquier conjunto de información de valores pasados de la serie. Las condiciones para la media y la varianza son las siguientes:

$$E(a_t|Z_{t-1},\dots,Z_1) = E(a_t \vee a_{t-1},\dots,a_1) = 0.$$

$$Var(a_t|Z_{t-1},...,Z_1) = Var(a_t|a_{t-1},...,a_1) = \sigma^2.$$

La etapa de diagnosis del modelo, así como comprueban las hipótesis básicas también incluyen la detección de términos deterministas, si existen que se manifiesten por términos de medias móviles no invertibles (Peña, 2005).

VII. Diseño metodológico.

Se presentan a continuación, todos los procesos desarrollados en esta investigación.

7.1 Tipo y alcance de investigación.

El presente estudio posee un enfoque cuantitativo con un nivel de investigación predictivo debido a la naturaleza numérica de los datos recolectados, además de los métodos y técnicas estadísticas que se aplicarán para poder conocer, describir y analizar el comportamiento de la producción agroexportadora mediante series temporales y predicciones.

7.1.1 Diseño de investigación.

Es una investigación no experimental con corte longitudinal, ya que la variable producción agrícola, se distribuye de manera natural y no es posible manipular la información, debido a que son cantidades ya estipuladas en años pasados. Del mismo modo la información involucra una unidad de estudio observada a intervalos regulares a lo largo del tiempo.

7.2 Técnica de recolección de datos y procesamiento de la información.

Los datos se obtuvieron del Banco Central de Nicaragua y corresponden a las cantidades en miles: de quintales para tres rubros y de cajas para uno de los cuatro rubros, café y ajonjolí en el período de 1990 al 2013; caña de azúcar y banano en el período de 1990 al 2017 respectivamente.

El procesamiento de información se realizará mediante los softwares IBM SPSS, versión 22, Microsoft Excel, lenguaje y entorno R versión 4.0.3, del cual se implementarán los siguientes paquetes:

ImputeTS: Con él se reemplazarán los valores perdidos de la serie de tiempo a través de la función de imputación, tsoutliers: Se utilizará para detectar los valores atípicos en la serie de tiempo, TSstudio: Se implementará en la visualización interactiva de objetos de series de tiempo.

ggplot2: Se utilizará para crear gráficos con detalles estéticos, forecast: Será empleado para mostrar y analizar pronósticos de series de tiempo, car: Con este

paquete se aplicarán pruebas estadísticas para comprobar igualdad de varianzas y normalidad.

7.3 Técnicas de análisis de datos.

En primer lugar, se observará mediante análisis exploratorio las variables de estudio a través de gráficos descriptivos, árbol de clasificación y supuestos de normalidad y homogeneidad de varianza. Luego se detectarán los valores atípicos para mejorar la precisión del pronóstico y valores perdidos, para lo cual se aplicará el método de imputación suavizado de Kalman en series de tiempo.

Después se realizará análisis descriptivo de series temporales identificando las componentes tendencia, estacionalidad y ruido, a fin de visualizar a profundidad el comportamiento. Se procederá a modelizar con ARIMA: Modelo autorregresivo de medias móviles para luego predecir.

Finalmente, la validación de modelos ARIMA por medio de la observación de la normalidad y la diagnosis sobre los residuos, el periodograma acumulado y contraste de Ljung – Box, para para comprobar si una serie de observaciones en un período de tiempo específico son aleatorias e independientes.

VIII. Resultados.

Se presenta el resumen descriptivo, inferencial y de modelización estadística, de los rubros banano, ajonjolí, caña de azúcar y café, con respecto a la información de la producción mensual extraída de datos oficiales publicados por el Banco Central de Nicaragua (BCN).

8.1 Rubro banano.

Los doce meses productivos del banano, cambian en torno al valor medio (287.18), esto de acuerdo con la figura 5, donde las barras de error representan, la producción en miles de cajas por mes, a un nivel de confianza del 95% sobresaliendo, por mostrar mayor producción los meses: septiembre y octubre.

450.0450.040

Figura 5. Barras de error de producción nacional de banano de 1990 a 2017.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

El comportamiento de la producción agroexportable de banano en miles de cajas revela que los años están distantes con respecto a la media 287.18, además de ser notorio que la mayoría muestra formas asimétricas, presentando valores atípicos por encima y debajo del promedio. La producción incrementa en los últimos 5 años de 2013 a 2017.

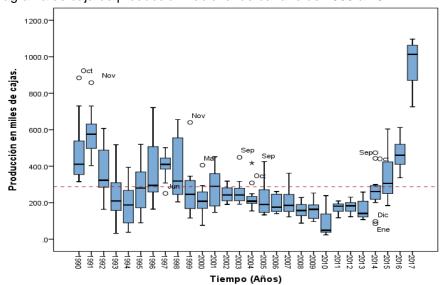
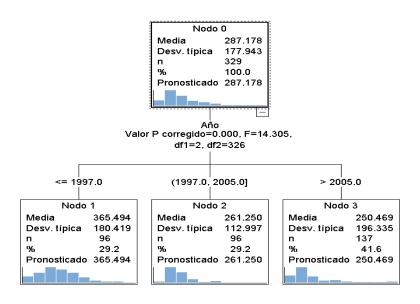



Figura 6. Diagrama de caja de producción nacional de banano de 1990 a 2017.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

El banano: previo y desde el año 1997 aumenta en producción con un promedio de 365.494 miles de cajas, en los años 1998 a 2005 la producción disminuye con un promedio de 261.250 y en los años 2006 a 2017 la producción media es de 250.469 miles de caja.

Figura 7. Árbol de clasificación de producción nacional de banano de 1990 a 2017.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

La serie de tiempo del rubro banano, presenta pocos datos faltantes. Sin embargo, se requiere la estimación de los mismos, las estimaciones fueron mínimas

7 observación es (2%) de 336. La figura 8 refleja las observaciones históricas (azul) y las observaciones faltantes estimadas (rojo), los valores perdidos se localizan en el año 2009 en el mes de diciembre y en el año 2017 en los meses de julio a diciembre.

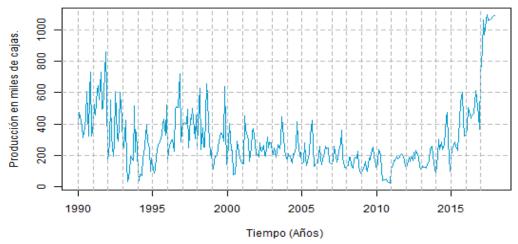
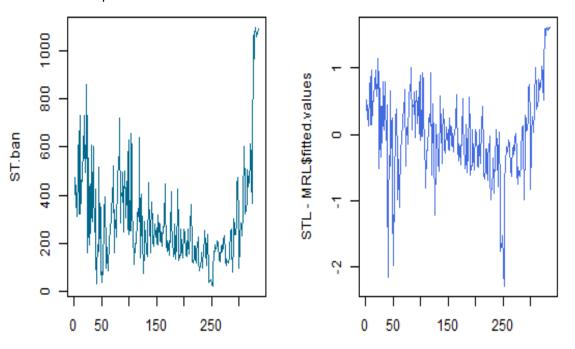

900

Figura 8. Valores imputados de la serie original de producción nacional de banano de 1990 a 2017.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

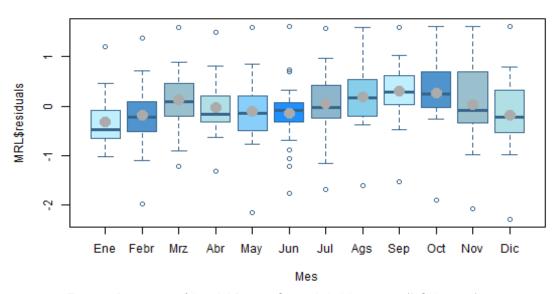
La predicción del rubro banano se puede ver afectada por valores atípicos; se detectó que el 0.30% (1) de 336 observaciones, la cual produce cambios temporales y cambios de nivel estacionales, se ajustó este dato extraño, dicho de otra forma, se estimó el reemplazo del valor atípico referido, ubicado en el año 1990 del mes de octubre. La figura 9 muestra el ajuste mencionado en la producción dada en miles de cajas. Asimismo, por simple inspección la serie anual no es estable o regular.


Figura 9. Valores atípicos ajustados de la serie producción nacional de banano de 1990 a 2017.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

Al eliminar el efecto tendencia claramente, se observa que existe un componente estacional con patrones muy marcados a lo largo de los años de producción del rubro banano.

Figura 10. Serie de tiempo logarítmica ajustado en tendencia por método de mínimo cuadrados ordinarios de la producción nacional de banano de 1990 a 2017.



Fuente: Datos extraídos del Banco Central de Nicaragua. (BCN, 2018).

Al comparar el componente estacional mensual entre los residuos, podemos ver en la figura 11 que la mediana de decrecimiento, en el mes de julio se desplaza por debajo de cero, además de presentar dos valores extremos visibles; por encima y debajo de cero, es decir que solo hubo un año respectivamente donde aumentó y disminuyó la producción de forma repentina. Además, de manera global en los 28 años de estudio la producción agroexportable en julio disminuye en contraste con los meses restantes.

Los meses agosto, octubre y noviembre se destacan por aumentar en producción. Si observamos los puntos en gris (media): Enero, abril, julio, octubre, noviembre y diciembre presentan asimetría positiva, o sea que sus medias son mayores que la mediana. Febrero, marzo, mayo, agosto y septiembre tienen simetría, las medidas de tendencia central coinciden. El mes de junio posee asimetría negativa (media por debajo de la mediana).

Figura 11. Componente estacional por mes en residuos de serie transformada por logaritmos de la producción nacional de banano de 1990 a 2017 con ajuste en tendencia.

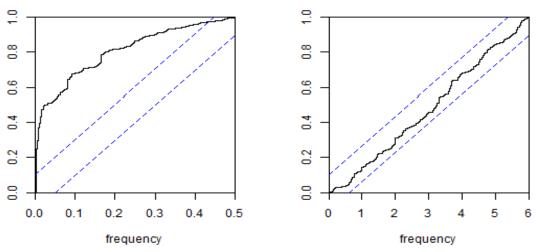
Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

El modelo para el producto banano sigue el orden: Autorregresivo p=1, Diferencia d=1, Medias móviles q=1, Componente estacional autorregresivo P=2, componente estacional de las diferencias D=0, componente estacional de las

medias móviles = 0, con periodo 12 y derrape. Se evaluaron diferentes modelos ARIMA y este fue el modelo con mejores resultados (BIC y AIC más bajos). A continuación, se visualizan el modelo ya citado en tabla 1.

Tabla 1. Modelo ARIMA estacional en rubro banano.

[Forecast method: ARIMA (1, 1, 1) (2, 0, 0) [12] with drift] Coefficients:							
	ar1	ma1	sar1	sar2	drift		
	0.3022	-0.7533	0.2447	0.1728	3.0270		
s.e.	0.0896	0.0614	0.0577	0.0605	3.3275		

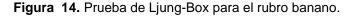

Model Information: sigma^2 estimated as 10707: log likelihood=-2028.111

AIC = 4068.22 AICc = 4068.48 BIC = 4091.1

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

El periodograma acumulado con residuos ajustado por el modelo ARIMA(1, 1, 1) (2, 0, 0) [12] con derrape e intervalos de confianza Kolmogórov-Smirnov para α = 0.05 muestra que las secuencias de valores no atraviesan las bandas de confianza evidenciando que los residuos presentan un comportamiento de ruido blanco.

Figura 12. Periodograma acumulado para residuos en serie original y periodograma acumulado para residuos en serie ajustada por el modelo ARIMA-SARIMA.


Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

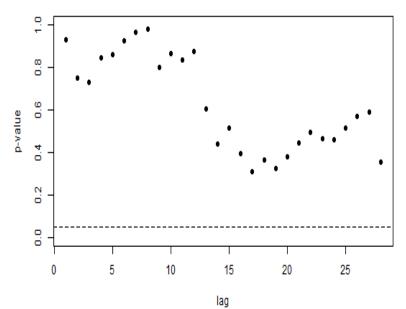
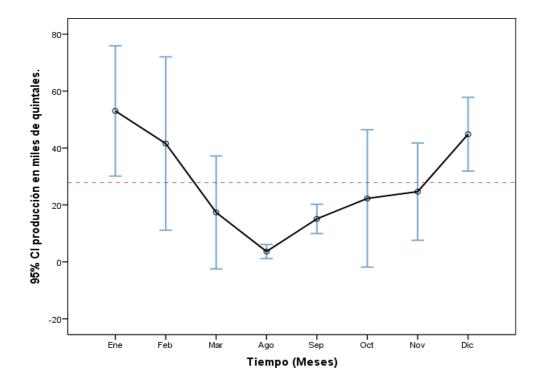

El pronóstico se realizó usando procedimientos auto.arima, donde la línea azul presenta los pronósticos, el área de penumbra representa intervalos de predicción del 95%. En la figura 13 se aprecia una tendencia de incremento sostenido en la producción del banano en los próximos años.

Figura 13. Pronóstico de producción nacional de banano de 1990 hacia el 2022.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

Todos los valores de p para la prueba Ljung-Box son mayores que 0.05, lo que nos indica que los residuos no son dependientes.



Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

8.2 Rubro ajonjolí

Los ocho meses productivos del ajonjolí, cambia en torno al valor medio (29.40), esto de acuerdo con la figura 15, donde las barras de error representan, la producción en miles de quintales por mes, a un nivel de confianza del 95% sobresaliendo, por mostrar mayor producción los meses: Enero y diciembre, las cosechas con menor producción para exportar se localizan en agosto-septiembre.

Figura 15. Barras de error de producción nacional de ajonjolí de 1990 a 2013.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

El comportamiento de la producción agroexportable de ajonjolí en miles de quintales revela que los años están distantes con respecto a la media 29.40, además de ser notorio que la mayoría muestra formas asimétricas, presentando valores atípicos por encima y debajo del promedio. La producción incrementa en los años 1993 a 1997.

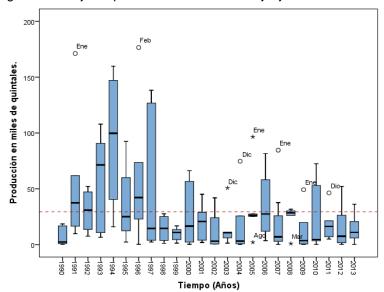
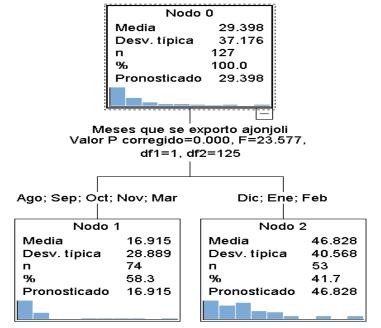



Figura 16. Diagrama de caja de producción nacional de ajonjolí d 1990 a 2013.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

El ajonjolí: desde agosto, septiembre, octubre, noviembre y marzo se mantiene en producción con un promedio de 16.915 miles de quintales, en los meses diciembre, enero a febrero, la producción aumenta con un promedio de 46.826 miles de quintales.

Figura 17. Árbol de clasificación de producción nacional de ajonjolí de 1990 a 2013.

La serie de tiempo del rubro ajonjolí presentaba gran número de datos faltantes, se requiere la ausencia total de valores perdidos, para indagar a fondo las características de la serie, de manera que, las estimaciones fueron 65 observaciones (34%) de 192. La figura 18 refleja las observaciones históricas (azul) y las observaciones faltantes estimadas (rojo), los valores perdidos se localizaban en los años 1990 a 2013, por lo tanto, las estimaciones realizadas fueron frecuentes para casi todos los meses del año. En este rubro, se omitieron los meses: abril, mayo, junio y julio, ya que en estos se manifiesta el período de siembra y crecimiento del rubro ajonjolí.

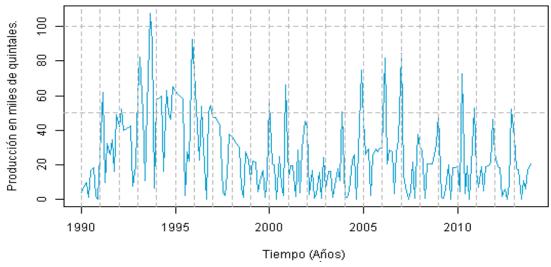
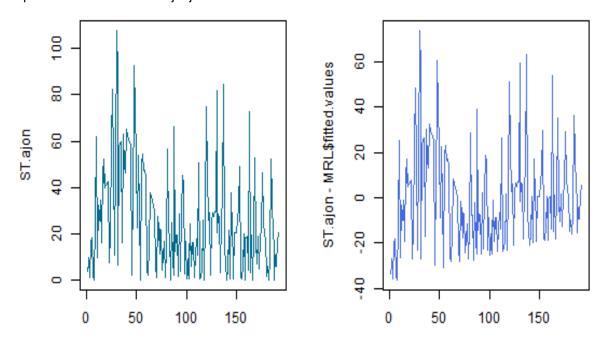

150 100 50 0 50 100 150 200 Time

Figura 18. Valores imputados de la serie original de producción nacional de ajonjolí de 1990 a 2013.

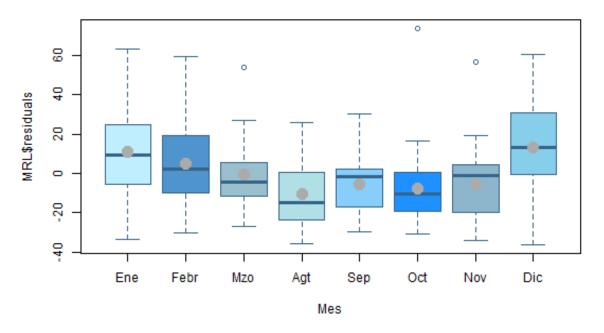
Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

La predicción del rubro ajonjolí se puede ver afectada por valores atípicos, se detectó que el 4% (7) de 192 observaciones produce: cambios temporales y cambios de nivel estacionales, por ello se ajustaron estos datos extraños, dicho de otra forma, se estimó el reemplazo de los valores atípicos ubicados en: enero de 1990, octubre-noviembre 1994, febrero 1996, enero y diciembre 1997, enero 2005 respectivamente. La figura 19 muestra el ajuste mencionado en la producción dada en miles de quintales. Asimismo, por simple inspección la serie anual no es estable o regular.


Figura 19. Valores atípicos ajustados de la serie producción nacional de ajonjolí de 1990 a 2013.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

Al eliminar el efecto tendencia claramente, se observa que existe un componente estacional con patrones muy marcados a lo largo de los años de producción del rubro ajonjolí. En la figura 20 se puede observar lo antedicho.


Figura 20. Serie de tiempo ajustada en tendencia por método de mínimo cuadrados ordinarios de la producción nacional de ajonjolí de 1990 a 2013.

Al comparar el componente estacional mensual entre los residuos, podemos ver en la figura 21 que la mediana de decrecimiento, en el mes de agosto se desplaza por debajo de cero, no presenta valores extremos visibles. Además, de manera global en los 24 años de estudio la producción agroexportable en agosto disminuye en contraste con los meses restantes. Los meses enero y diciembre se destacan por aumentar en producción.

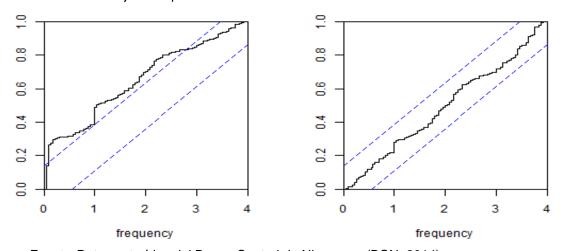
Si observamos los puntos en gris (media): febrero, marzo, agosto y octubre presentan asimetría positiva, o sea que sus medias son mayores que la mediana. Enero y diciembre tienen simetría, las medidas de tendencia central coinciden. Los meses septiembre y octubre poseen asimetría negativa (media por debajo de la mediana).

Figura 21. Componente estacional por mes en residuos de la producción nacional de ajonjolí de 1990 a 2013 con ajuste en tendencia.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

El modelo visualizado en la tabla 2 para el producto ajonjolí sigue el orden: Autorregresivo p = 2, Diferencia d = 1, Medias móviles q = 2, Componente estacional autorregresivo P = 0, componente estacional de las diferencias D = 0, componente

estacional de las medias móviles = 2, con periodo 8. Se evaluaron diferentes modelos ARIMA y este, fue el modelo con mejores resultados (BIC y AIC más bajos).


Tabla 2. Modelo ARIMA estacional en rubro ajonjolí.

Forecast method: ARIMA (2, 1, 2) (0, 0, 2) [8] Coefficients:									
ar1 ar2 ma1 ma2 sma1 sma2									
	0.9829 -0.2686 -1.8260 0.8957 0.1049 0.1279								
s.e.	e. 0.1033 0.0783 0.0758 0.0605 0.0793 0.0761								
Mod	el Informa	ition:							
sigm	sigma^2 estimated as 363.7: log likelihood=-832.62								
AIC=	1679.23	AICc=167	79.84 BIC	C=1702					

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

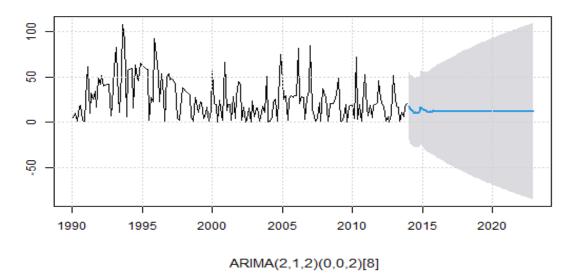
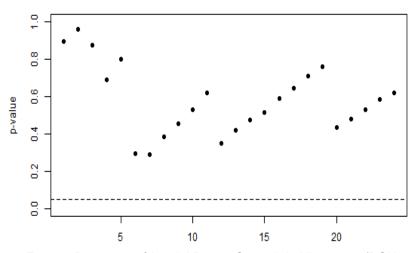

El periodograma acumulado con residuos ajustado por el modelo ARIMA (2, 1, 2) (0, 0, 2) [8] con intervalos de confianza Kolmogórov-Smirnov para α = 0.05 muestra que las secuencias de valores no atraviesan las bandas de confianza evidenciando que los residuos presentan un comportamiento de ruido blanco.

Figura 22. Periodograma acumulado para residuos en serie original y periodograma acumulado para residuos en serie ajustada por el modelo ARIMA—SARIMA.

El pronóstico de la producción agroexportable del banano se realizó usando procedimientos auto.arima, donde la línea azul presenta los pronósticos, el área de penumbra representa intervalos de predicción del 95%. Se aprecia un continuo decrecimiento sostenido en la producción de ajonjolí en los próximos años. Observar figura 23.


Figura 23. Pronóstico de producción nacional de ajonjolí de 1990 hacia el 2022.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

Todos los valores de p para la prueba Ljung-Box Q son mayores que 0.05, lo que nos indica que los residuos no son dependientes.

Figura 24. Prueba de Ljung-Box para el rubro ajonjolí.

8.3 Rubro caña de azúcar.

Los siete meses productivos de la caña de azúcar, cambian en torno al valor medio (676.4), esto de acuerdo con la figura 25, donde las barras de error representan, la producción en miles de quintales por mes, a un nivel de confianza del 95% sobresaliendo, por mostrar mayor producción los meses: Enero, febrero, marzo y abril, las cosechas con menor producción para exportar se localizan en mayo-noviembre.

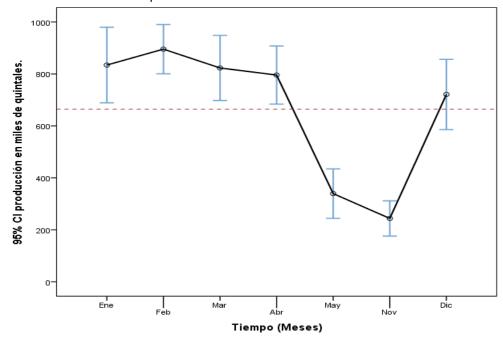
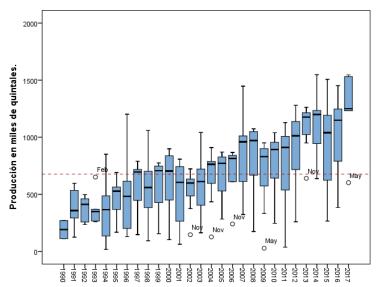
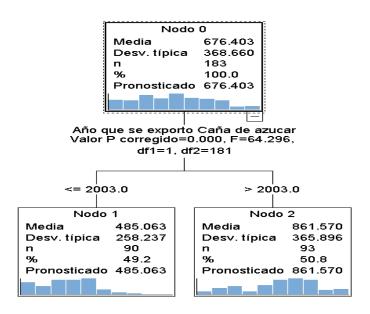



Figura 25. Barras de error de producción nacional de caña de azúcar de 1990 a 2017.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

El comportamiento de la producción agroexportable de la caña de azúcar en miles de quintales revela que los años están distantes con respecto a la media 676.4, además de ser notorio que la mayoría muestra formas asimétricas, presentando valores atípicos por debajo del promedio. La producción incrementa en los años 2004 a 2017.


Figura 26. Diagrama de caja de producción nacional de caña de azúcar de 1990 a 2017.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

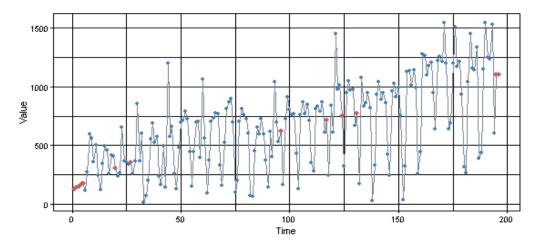
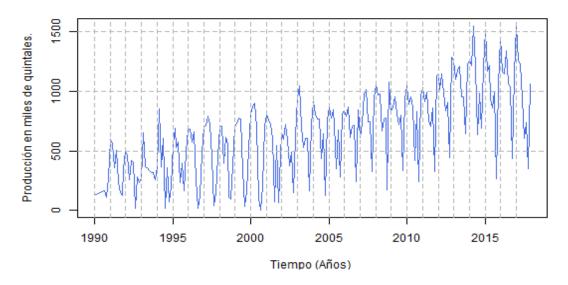

La caña de azúcar: en años previos y hasta el 2003 se mantiene en producción con un promedio de 485.063 miles de quintales, en años mayores a 2003, la producción aumenta con un promedio de 861.570 miles de quintales.

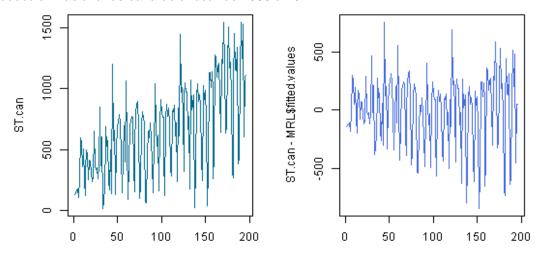
Figura 27. Diagrama de caja de producción nacional de caña de azúcar de 1990 a 2017.

La serie de tiempo del rubro caña de azúcar presentaba datos faltantes, se requiere la ausencia total de valores perdidos, para indagar a fondo las características de la serie, de manera que, las estimaciones fueron 13 observaciones (7%) de 196, por lo tanto, las estimaciones realizadas fueron mesuradas en distintos años. La figura 28 refleja las observaciones históricas (azul) y las observaciones faltantes estimadas (rojo), Los valores perdidos se localizaban en 7 (25%) años en estudio (1990-2017). En este rubro, se omitieron los meses: junio, julio, agosto, septiembre y octubre, ya que, en estos, se manifiesta el período de siembra y crecimiento del rubro caña de azúcar.


Figura 28. Valores imputados de la serie original de producción nacional de caña de 1990 a 2017.

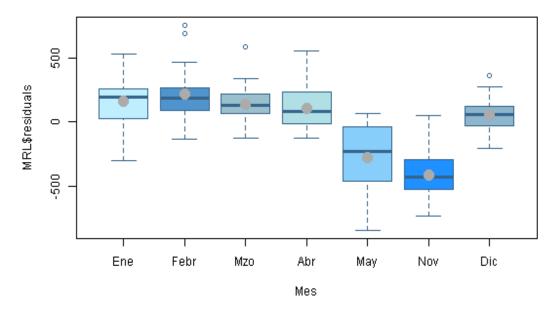
Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

La predicción del rubro caña de azúcar se puede ver afectada por valores atípicos, se detectó que el 2% (4) de 196 observaciones produce: cambios temporales y cambios de nivel estacionales, por ello se ajustaron estos datos extraños, dicho de otra forma, se estimaron reemplazos de los valores atípicos ubicados en enero y febrero de 1996, febrero 2007 y noviembre del 2017 respectivamente. La figura 29 muestra el ajuste mencionado en la producción dada en miles de quintales. Asimismo, por simple inspección la serie anual no es o regular.


Figura 29. Valores atípicos ajustados de la serie producción nacional de caña de 1990 a 2017.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

Al eliminar el efecto tendencia claramente, se observa que existe un componente estacional con patrones muy marcados a lo largo de los años de producción del rubro caña de azúcar. En la figura 30 se puede observar lo antedicho.


Figura 30. Serie de tiempo ajustada en tendencia por método de mínimos cuadrados ordinarios de la producción nacional de caña de azúcar de 1990 a 2017.

Al comparar el componente estacional mensual entre los residuos, podemos ver en la figura 31 que la mediana de decrecimiento, en el mes de noviembre se desplaza por debajo de cero, no presenta valores extremos visibles. Además, de manera global en los 28 años de estudio la producción agroexportable en agosto disminuye en contraste con los meses restantes. Los meses enero, febrero, marzo, abril y diciembre se destacan por aumentar en producción

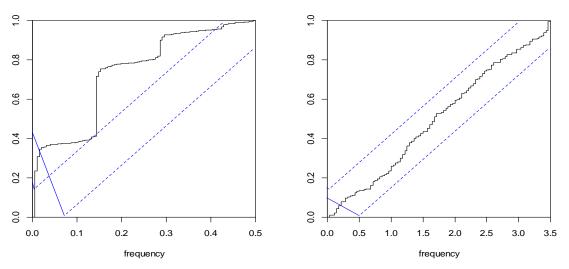
Si observamos los puntos en gris (media): abril presenta asimetría positiva, o sea que su media es mayor que la mediana, marzo y noviembre tienen simetría, las medidas de tendencia central coinciden. Los meses enero, febrero, mayo y diciembre poseen asimetría negativa (media por debajo de la mediana).

Figura 31. Componente estacional por mes en residuos de la producción nacional de caña de azúcar de 1990 a 2017 con ajuste en tendencia.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

El modelo visualizado en la tabla 3 para el producto caña de azúcar sigue el orden: Autorregresivo p=1, diferencia d=0 medias móviles q=1, componente estacional autorregresivo P=0, componente estacional de las diferencias D=1, componente estacional de las medias móviles =2 con periodo 7 y derrape. Se

evaluaron diferentes modelos ARIMA y este, fue el modelo con mejores resultados (BIC y AIC más bajos).

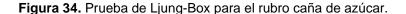

Tabla 3. Modelo ARIMA estacional en rubro caña de azúcar.

Forecast method: ARIMA (1,0,1) (0,1,2) [7] with drift] Coefficients:								
ar1	mal	sma1	sma2	Drift				
0.7535	-0.6032	-0.5757	-0.1152	4.3947				
s.e. 0.1870 Model Inform	0.2219 ation: sigma^2			0.9308 6: log likelihood=-1231.27				
AIC=2474.53	AICc=2474.9	99 BIC=2	493.98					

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

El periodograma acumulado con residuos ajustado por el modelo ARIMA (1, 0, 1) (0, 1, 2) $_{[7]}$ con derrape e intervalos de confianza Kolmogórov-Smirnov para α = 0.05. Este no muestra evidencias para rechazar la hipótesis de que los residuos posean un proceso estocástico de ruido blanco.

Figura 32. Periodograma acumulado para los residuos en serie original y periodograma acumulado para residuos en serie ajustada por el modelo ARIMA—SARIMA.


El pronóstico de la producción agroexportable de la caña de azúcar se realizó usando procedimientos auto. arima, donde la línea azul presenta los pronósticos, el área de penumbra representa intervalos de predicción del 95%. Se aprecia que la producción de caña de azúcar seguirá manteniendo el mismo comportamiento de los últimos dos años en el futuro con un leve decrecimiento. Observar figura 33.

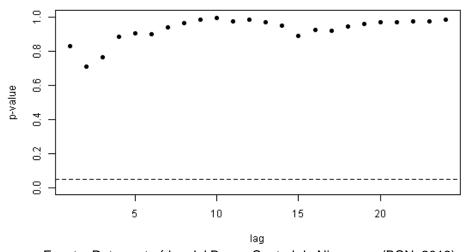

ARIMA(1,0,1)(0,1,2)[7]

Figura 33. Pronóstico de producción nacional de caña de azúcar de 1990 hacia el 2022.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

Todos los valores de p para la prueba Ljung-Box son mayores que 0.05, lo que nos indica que los residuos no son dependientes.

8.4 Rubro café.

Los seis meses productivos del café, cambian en torno al valor medio (262.37), esto de acuerdo con la figura 35, donde las barras de error representan, la producción en miles de quintales por mes, a un nivel de confianza del 95% sobresaliendo, por mostrar mayor producción los meses: Enero y diciembre, las cosechas con menor producción para exportar se localizan en marzo y abril

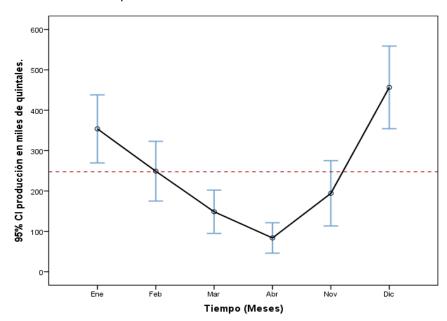
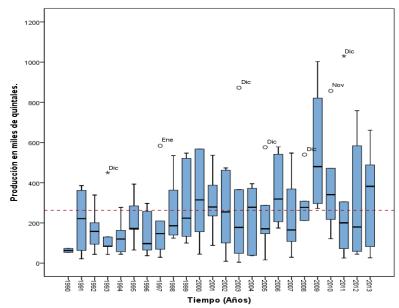
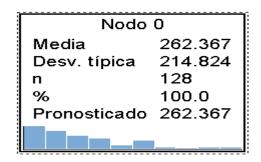



Figura 35. Barras de error de producción nacional de café de 1990 a 2013.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

El comportamiento de la producción agroexportable del café en miles de quintales revela que los años están distantes con respecto a la media 262.37, además de ser notorio que la mayoría muestra formas asimétricas, presentando valores atípicos por debajo del promedio. La producción incrementa en los últimos cinco años 2009 a 2013.


Figura 36. Diagrama de caja de producción nacional de café de 1990 a 2013.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014)

El café tiene una producción promedio de 262.37 en miles de quintales.

Figura 37. Árbol de clasificación de producción nacional de café de 1990 a 2013.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

La serie de tiempo del rubro café presentaba datos faltantes, se requiere la ausencia total de valores perdidos, para indagar a fondo las características de la serie, de manera que, las estimaciones fueron 38 observaciones (23%) de 144, por lo tanto, las estimaciones realizadas fueron mesuradas en distintos años. La figura

38 refleja las observaciones históricas (azul) y las observaciones faltantes estimadas (rojo), Los valores perdidos se localizaban en 11 (46%) años en estudio (1990-2013). En este rubro, se omitieron los meses: mayo, junio, julio, agosto, septiembre y octubre, ya que, en estos, se manifiesta el período de siembra y crecimiento del rubro café.

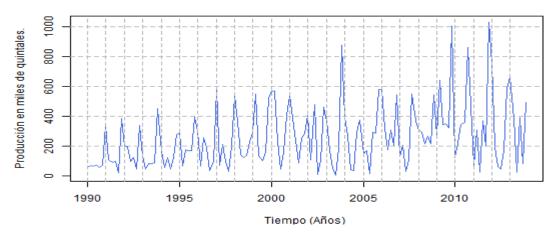
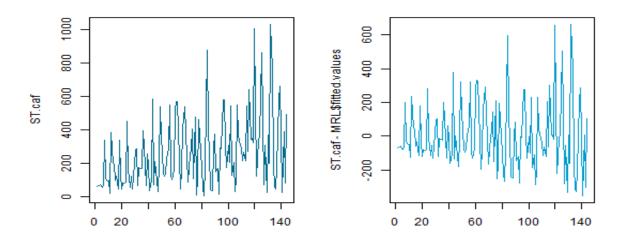

1000 750 250 250 0 50 100 150

Figura 28. Valores imputados de la serie original de producción nacional de café de 1990 a 2013.

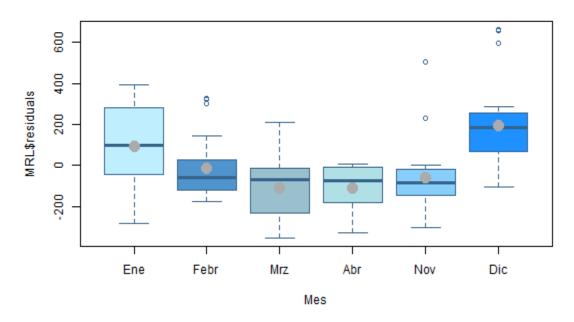
Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

La predicción del rubro café se puede ver afectada por valores atípicos, pero en este caso no se detectaron valores que produjeran: cambios temporales y cambios de nivel estacionales, dicho de otra forma, no se estimaron reemplazos de valores atípicos, debido a que los valores de la serie no afectan la predicción del rubro café. La figura 39, muestra la serie de tiempo del rubro café sin ajuste en valores atípicos. Asimismo, por simple inspección la serie anual no es estable o regular.


Figura 29. Valores atípicos ajustados de la serie producción nacional de café de 1990 a 2013.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

Al eliminar el efecto tendencia claramente, se observa que existe un componente estacional con patrones muy marcados a lo largo de los años de producción del rubro café. En la figura 40 se puede observar lo antedicho.


Figura 30. Serie de tiempo ajustada en tendencia por método mínimos cuadrados ordinarios de la producción nacional de café de 1990 a 2013.

Al comparar el componente estacional mensual entre los residuos, podemos ver que la mediana de decrecimiento, en los meses marzo, abril y noviembre la mediana se desplaza por debajo de cero, se presentan valores extremos visibles en noviembre por encima de cero. Además, de manera global en los 24 años de estudio, se visualiza una aparente estabilidad en medianas en contraste con los meses restantes. Los meses enero y diciembre se destacan por aumentar en producción.

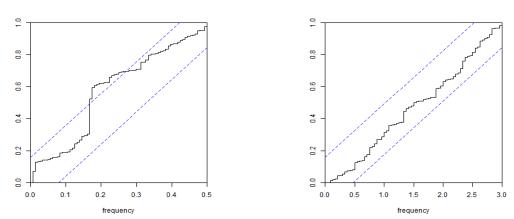
Si observamos los puntos en gris (media): febrero presenta asimetría positiva, o sea que su media es mayor que la mediana, enero tienen simetría, las medidas de tendencia central coinciden. Los meses marzo y abril poseen asimetría negativa (media por debajo de la mediana), noviembre-diciembre medias con leve ascendencia con respecto a la mediana.

Figura 31. Componente estacional por mes en residuos de serie de la producción nacional de café de 1990 a 2013 con ajuste en tendencia.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

El modelo para el producto café sigue el orden: Autorregresivo p = 5, diferencia d = 1 medias móviles q = 0, componente estacional autorregresivo P = 0, componente estacional de las diferencias D = 0, componente estacional de las

medias móviles = 1 con periodo 6. Se evaluaron diferentes modelos ARIMA y este, fue el modelo con mejores resultados (BIC y AIC más bajos). A continuación, se visualiza el modelo ya citado en tabla 4.


Tabla 4. Modelo ARIMA estacional en rubro café.

[Forecast method ARIMA (5,1,0) (0,0,1) [6]									
Coefficients:									
ar1 ar2 ar3 ar4 ar5 sma1									
	-0.8911 -0.8989 -0.9384 -0.8857 -0.8483 -0.5893								
s.e.	0.0536	0.0597	0.0526	0.0553	0.0693	0.1126			
Mod	el Informa	tion:							
sigm	sigma^2 estimated as 29086: log likelihood=-936.79								
AIC=	=1887.59	AICc=18	88.42 BI	C=1908.3	3				

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

El periodograma acumulado con residuos ajustados por el modelo ARIMA (5,1,0) (0,0,1) [6] con intervalos de confianza Kolmogórov-Smirnov para α =0.05 podemos decir que los residuos del modelo ajustado no difieren significativamente por lo tanto sigue un proceso estocástico de ruido blanco.

Figura 32. Periodograma acumulado para residuos en serie original y periodograma acumulado para residuos en serie ajustada por el modelo ARIMA – SARIMA.

El pronóstico de la producción agroexportable del café se realizó usando procedimientos auto.arima, donde la línea azul presenta los pronósticos, el área de penumbra representa intervalos de predicción del 95%. Se aprecia que la producción de café seguirá manteniendo el mismo comportamiento en los últimos años, pero estará disminuyendo. Observar figura 43

000 - 000 -

Figura 33. Pronóstico de producción nacional de café de 1990 hacia 2022.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

Todos los valores de p para la prueba Ljung-Box son mayores que 0.05, lo que nos indica que los residuos no son dependientes.

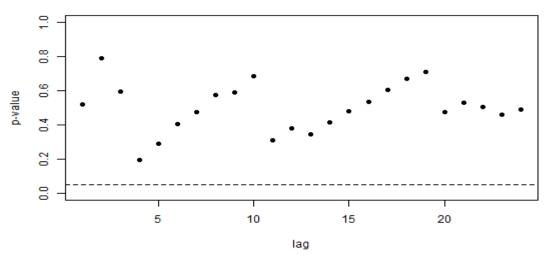


Figura 34. Prueba de Ljung-Box para el rubro café.

IX. Conclusiones.

- 1. De acuerdo con los pronósticos para los cuatro rubros agroexportables; el rubro banano manifiesta para los siguientes cinco años, crecimiento sostenido, en cambio el rubro ajonjolí en los últimos nueve años se comportará con un decrecimiento continuo, por otro lado, el rubro caña de azúcar presentará un leve decrecimiento y el mismo comportamiento para los años futuros, por último, el rubro café seguirá igual comportamiento además de que estará disminuyendo.
- 2. Los modelos ARIMA de Box-Jenkins seleccionados para predecir los comportamientos en las series de tiempo de las cantidades de producciones nacionales agroexportables de cada rubro, son los siguientes:

Banano: ARIMA (1, 1, 1) (2, 0, 0) [12]

Ajonjolí: ARIMA (2, 1, 2) (0, 0, 2) [8]

Caña de azúcar: ARIMA (1,0,1) (0,1,2) [7]

Café: ARIMA (5,1,0) (0,0,1) [6]

- 3. El dar tratamiento a valores perdidos y datos extremos con el método suavizado de Kalman y detección de datos atípicos para series de tiempo respectivamente, ayudó formar un modelo con mejores estimaciones.
- 4. Estos procedimientos de predicción ayudarán en la toma decisiones sobre la demanda de los productos agroexportables de Nicaragua. Contribuirá para identificar fácilmente si las producciones aumentaran, decrecerán o si se mantendrán constante en los rubros banano, ajonjolí, caña de azúcar o café, y así satisfacer las necesidades del mercado exterior.

X. Recomendaciones.

- A Estudiantes y Economistas con las actualizaciones correspondientes de los datos se deben dinamizar los modelos de pronósticos.
- Aplicar técnicas de predicción que permitan pronósticos eficientes para modelos con estacionalidad.
- Realizar estos análisis ayudará a determinar si la metodología de series de tiempo permite contrarrestar posibles amenazas en los productos agroexportables.
- Cada uno de los rubros presenta un comportamiento distinto por ello se debe analizar la serie de datos por individual, siguiendo el orden de análisis correspondiente para poder seleccionar el mejor modelo ARIMA.
- Aplicar otro tipo de transformación como por ejemplo Box Cox, ya que es meticuloso es decir es más exhaustivo que otros métodos de transformación.

XI. Bibliografía.

Bahamonde. (2013). Conceptos macroeconómicos - Calameo.

Banco Central de Nicaragua (BCN). (2004). *Indicadores económicos – Notas metodológicas*. Managua- Nicaragua.

Banco Central de Nicaragua (BCN). (2005). *El Tabaco. Revista de comercio exterior*. Managua- Nicaragua.

Banco Central de Nicaragua (BCN). (2005). Series mensuales de indicadores económicos, Managua- Nicaragua.

Banco Central de Nicaragua (BCN). (2020). *Informe trimestral del producto interno bruto primer trimestre*. Managua- Nicaragua.

El Centro de Trámites de las Exportaciones (Cetrex). (2012). Informe de exportaciones de café. Managua – Nicaragua.

Comisión Nacional para la Promoción de las Exportaciones (CNPE), Ministerio de Fomento, Industria y Comercio (MIFIC), Javaland. (2014). *Oferta exportable actual y potencial de Nicaragua*. Managua-Nicaragua.

La Comisión Económica para América Latina (CEPAL). (2020). *Exportaciones de Nicaragua*. Santiago.

Econopedia. (2019). Exportación.

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), Organización Mundial de la Salud (OMS). (2001). *Programa Conjunto FAO / OMS sobre Normas Alimentarias.*

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2013). *El algodón, un cultivo prometedor en Nicaragua*.

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). (2015). AQUASTAT Perfil de País - Nicaragua, Roma.

García Díaz. (2016). Predicción en el dominio del tiempo: análisis de series temporales para ingenieros. España. Editorial de la Universidad Politécnica de Valencia.

Gabinete de producción consumo y comercio de Nicaragua. (2019). *Producción de exportación de banano.* Managua- Nicaragua.

Hossain. (2016). Forecasting of banana production in Bangladesh.

H. Andrade. (2016). *La tecnología y la producción agrícola: el pasado y los actuales desafíos*. Argentina. Editorial de la Universidad Nacional de La Plata.

Hanbook. (2012). Engineering Statistics Hanbook.

Initial Coin Offering (ICO), (2020). Informe del mercado del café.

Hyndman y Athanasopoulos. (2018). Forecasting.

Hayami y Ruttan. (1990). Conceptos de Economía.

Instituto Nacional de Información de Desarrollo (INIDE). (2007). *Glosario*. Managua-Nicaragua.

LaFuente, (2012). Aspectos del comercio exterior. Editorial B - EUMED.

Peña, (2005). Análisis de Series Temporales. Barcelona España, Alianza Editorial.

Proyecto IICA/EPAD. (2003). "Comercialización de la Caña de Azúcar en Nicaragua, casos comparativos con Honduras y Costa Rica. Managua-Nicaragua.

Rantou, E. K. (2017). Hellanicus.

Skoet, J. (2012). El estado mundial de la Agricultura y la Alimentación. Editorial D - FAO.

Tucker, B. &. (2017). Comercio exterior de Nicaragua. Managua-Nicaragua.

Valenzuela Millán, R. P. (2014). *Elibro.* (E. Cid, Editor).

XII. ANEXOS.

Anexo 1: Tabla de producción nacional de exportación de banano, desde 1990 hasta 2017.

Año	Ene	Feb	Mar	Abr	May	Jun
1990	402.5	471.4	419	386.9	315.2	384
1991	403	526.7	457.1	618.3	644	554.7
1992	163.6	282.2	551.9	321.6	194.6	286.4
1993	270.6	250.8	422.7	145.5	31.9	94.4
1994	97.5	37.9	80.7	73	189.8	200.8
1995	149.7	89.6	109.3	194.5	270.2	277.2
1996	164.6	233.2	284.2	289.2	300.3	228.5
1997	412.2	396.8	407.9	405.3	493.9	250.9
1998	261.6	530.7	629.8	238.1	375.3	253.3
1999	131.6	115.9	201	195.7	203	296.5
2000	172	282.3	405.4	234.9	232.1	75.9
2001	146.9	149	451.9	368.6	322	296.3
2002	217	190.7	281.4	235.4	229.1	265.7
2003	214.9	206.3	250.4	191.7	221	267.4
2004	167.3	212.9	202.2	197	154.7	210.2
2005	146.2	159.5	281.4	191.7	138.5	188.3
2006	151.2	151.2	261.2	176.6	140.3	174.1
2007	147.5	165.7	257.6	197.1	156	185
2008	131.1	135.3	189.8	189.8	142.6	118.9
2009	99.9	105.7	137.4	163.4	121.1	96.3
2010	107.3	167.8	238.7	203.7	109	40
2011	117.4	137.6	166.4	169.4	193	178.7
2012	123	140.8	188.7	165.5	193.1	168.8
2013	107.6	137.9	124.5	124	120.4	143.8
2014	84.4	201.1	299.4	235.8	287.6	238.4
2015	184.1	239.4	269.7	288	260.3	230.2
2016	336.6	384.8	506.1	460.3	435.8	459
2017	725.3	870.5	1,062.80	964.1	1,061.40	1,096.20

Año	Jul	Ago	Sep	Oct	Nov	Dic
1990	435.1	605.1	323.1	884	730.2	324.8
1991	729.8	494.1	500.4	595.8	857.8	610.4
1992	607.2	324.1	292.7	393.3	601.7	424
1993	197.2	187.3	169.5	517.4	221.8	348.1
1994	336.3	394	283.9	249.8	100.8	185
1995	283.3	326.1	406	428.3	330.6	519.1
1996	496.8	510.2	504.2	618.2	721.1	283.6
1997	434	428.2	501.7	372.3	307.9	454.9
1998	252.4	655.7	579.9	387.5	204.1	234.1
1999	311.9	345.3	330.7	288.7	639.7	140
2000	80.4	175.2	293.6	223.7	191.5	166.1
2001	164.5	248.5	349.2	369.9	283	199.3
2002	203.4	197.5	318.1	248.8	285.3	280.2
2003	245.4	290.6	448.2	316.9	238.6	198.2
2004	206.5	249	416.9	308.4	194.2	219.3
2005	216	326.8	425.4	260.4	132.9	147.4
2006	222.5	260	245.5	247.9	163.3	152.4
2007	232.2	269.7	361.6	185	130.6	122.1
2008	171.4	190.2	186	228.3	126.6	87.7
2009	182.1	176.2	216.9	253	193.6	-
2010	43	47.1	50.1	34.7	29.1	23.6
2011	183.6	190.1	209.3	203.2	193.6	138.6
2012	223.1	177.5	230.5	204	197.5	128.5
2013	170.4	244.9	248.5	258.2	149.2	120.5
2014	248.7	273.4	442.7	473.6	284.8	97.3
2015	329.9	421.5	537.8	604.1	426.1	323.1
2016	468.5	533	611.4	566.8	459.7	365.1
2017						

Fuente: Ministerio Agropecuario y Forestal (MAGFOR), Empresa Productora de Banano de Nicaragua (PROBANIC S.A) y Banco Central de Nicaragua (BCN), producción en caja de 42 libras de peso.

Anexo 2: Tabla de producción nacional de exportación de ajonjolí, desde 1990 hasta 2013.

Año	Ene	Feb	Mar	Abr	May	Jun
1990	-	-	-	-	-	-
1991	171.2	61.8	9.8	-	-	-
1992	42.2	52.2	-	-	-	-
1993	60.2	82.6	-	-	-	-
1994	-	-	-	-	-	-
1995	-	-	-	-	-	-
1996	73.6	176.6	22.9	-	-	-
1997	138.3	-	-	-	-	-
1998	-	-	-	-	-	-
1999	11.4	-	-	-	-	-
2000	56.6	•	-	-	-	-
2001	12.7	1	-	-	-	-
2002	41.9	2.7	-	-	-	-
2003	6.1	•	-	-	-	-
2004	0.8	1.4	5	-	-	0.1
2005	96.6	26.1	-	1.6	-	-
2006	-	81.6	20.3	-	-	0.5
2007	84.6	14.2	7	-	-	-
2008	30.2	28.4	0.9	-	-	-
2009	49.2	1.4	0.6	-	-	-
2010	-	4.6	72.5	-	-	-
2011	16.3	7.1	-	-	-	-
2012	26.3	•	-	-	-	-
2013	36.2					

Año	Jul	Ago	Sep	Oct	Nov	Dic
1990	-	1	16.8	18.5	2.3	0.1
1991	-	-	25.9	-	16.5	49
1992	-	-	-	-	7.6	19.6
1993	-	10.8	-	107.9	90.7	6.6
1994	-	16	-	159.9	134.4	65.1
1995	-	-	2.3	27.7	22.4	92.4
1996	-	-	30.1	0.2	-	54.2
1997	-	-	3.9	2.3	14.5	126.8
1998	-	-	6.5	1.1	27.6	22.6
1999	-	4.5	10.4	16.8	1.3	13.5
2000	-	0.3	25.1	8.1	2.3	66.2
2001	-	1.9	28.7	4	28.9	45.1
2002	0.1	0.5	3.5	-	0.5	24.1
2003	0.4	1.3	10.8	-	10.8	50.8
2004	-	-	25.7	0.3	-	74.7
2005	-	2.1	25.3	-	27.4	-
2006	-	-	-	3.6	-	34.6
2007	-	0.1	5	-	0.8	37.6
2008	-	-	-	-	26.2	31.7
2009	-	5.8	19.9	0.2	-	-
2010	-	3.5	-	0.1	-	52.9
2011	-	5	-	-	21.3	46.3
2012	-	1.7	6.3	0.1	8.7	52.2
2013		0.1	11	6		20.7

Fuente: Ministerio Agropecuario y Forestal (MAGFOR), y Banco Central de Nicaragua (BCN), producción en miles de quintales.

Anexo 3: Tabla de producción nacional para exportación de caña de azúcar, desde 1990 hasta 2017.

Año	Ene	Feb	Mar	Abr	May	Jun
1990	-	-	-	-	-	-
1991	596.9	560.9	357.7	505.7	243.3	147.2
1992	496.9	460.9	257.7	417	407.1	20.8
1993	265.7	651.1	368.9	360.5	337.6	-
1994	365.7	851.1	368.9	604.9	17.1	-
1995	556.1	689.9	527.2	571.2	237.9	-
1996	140.8	1201.7	571.4	658.4	261	19.7
1997	695.3	710.4	789.7	724.7	445.7	38.5
1998	699.4	703.4	397.2	1061	559.3	110.7
1999	706.4	729.1	774.4	765.2	332.4	35
2000	807.9	867.1	898.5	699.3	102.4	3.4
2001	808.2	760.8	723.5	605	73.7	-
2002	650.2	598.6	722.9	596	374.5	0.4
2003	404.5	1041.1	694.5	528.4	-	-
2004	909.2	806	763	768.5	433.9	-
2005	869.7	771.6	845	711.1	347.8	-
2006	835.9	791.9	866.7	611.5	-	-
2007	612.8	1447.3	975.3	1011.3	-	-
2008	1049.4	968.2	974.7	667.9	-	-
2009	829.9	863.7	950.7	815.3	28	-
2010	1039.7	892.7	950.1	864.4	420	-
2011	1025.6	910.7	989.7	751	36.9	-
2012	1133.7	1012.8	1139.9	987.5	259.9	-
2013	1262.4	1096.5	1176.7	1205	949.7	-
2014	1256.1	1211.7	1547.3	1196.1	638.2	-
2015	1507.6	1168.4	1214.9	933.9	312.6	-
2016	1451.5	1159	1143.8	1334.6	384.3	-
2017	1545.9	1250.5	1231.8	1530	602.2	28.8

Año	Jul	Ago	Sep	Oct	Nov	Dic
1990	-	-	-	-	112.1	270.2
1991	-	-	-	-	124.1	341.2
1992	-	-	-	-	-	235.1
1993	-	-	-	-	-	260.3
1994	•	-	-	-	70.2	200.2
1995	-	-	-	-	167.7	497.2
1996	•	-	-	-	128.4	482.2
1997	-	-	-	-	147.3	447.6
1998	-	-	-	-	92.5	370.1
1999	•	-	-	-	154.4	522.8
2000	•	-	-	-	201.5	704.3
2001	•	-	-	-	62.3	454.7
2002	-	-	-	-	146.3	616.3
2003	•	-	-	-	163.4	721.5
2004	•	-	-	-	126.6	758
2005	-	-	-	-	282.8	809.5
2006	•	-	-	-	240.1	840.5
2007	-	-	-	-	323.6	945.1
2008	-	-	-	-	174.1	1073.6
2009	•	-	-	-	331.9	935.5
2010	•	-	-	-	245.7	961.8
2011	-	-	-	-	324.3	1128.8
2012	•	-	-	-	446	1280.1
2013	-	-	-	-	639.6	1224.2
2014	•	-	-	-	691.5	1199
2015	•	-	-	-	265.5	1039.6
2016	-	-	-	-	437.7	1149.4
2017						

Fuente: Ministerio Agropecuario y Forestal (MAGFOR), Banco Central de Nicaragua (BCN), Ingenios, y Coordinadora Nacional Plan de Ayala (CNPA) producción en miles de quintales.

Anexo 4: Tabla de producción nacional para exportación según ciclo agrícola de café desde 1990 hasta 2013.

Año	Ene	Feb	Mar	Abr	May	Jun
1990	-	-	-	-	-	-
1991	337.6	105.3	-	-	-	-
1992	200.9	192.7	94.4	123.1	-	-
1993	130.2	43.3	82.7	82.5	-	-
1994	163.2	56.9	120	44.4	-	-
1995	284.9	65.4	172.4	-	-	-
1996	297.5	65.4	257.6	-	-	-
1997	583.9	69	209.9	95.4	-	-
1998	534.7	363.2	145.2	124.7	-	-
1999	291.4	547.5	133.4	100.1	-	-
2000	567.6	568.1	225.3	44.7	-	-
2001	537	387.6	235.1	88.6	-	-
2002	403.2	106.6	473.6	9.1	-	-
2003	365.6	170.9	48.8	4.5	-	-
2004	395.2	267.2	39	37.3	-	-
2005	146.4	170.9	15.9	-	-	-
2006	578.4	318.8	174.6	-	-	-
2007	126.7	203.5	29	108.4	-	-
2008	308.6	290.2	212.2	264.5	-	-
2009	271.3	638.5	-	-	-	-
2010	121.3	217.5	340.7	-	-	-
2011	72.4	304.7	25.3	-	-	-
2012	758.2	192.9	58.7	44.8	-	-
2013	661.6	382.1	26.2	-	-	-

Año	Jul	Ago	Sep	Oct	Nov	Dic
1990	-	-	-	31.5	53.7	72.9
1991	-	-	-	14.8	21.3	385.9
1992	-	-	-	-	43.7	338.8
1993	-	-	-	-	85.6	449.9
1994	-	-	-	-	120.2	277.1
1995	•	-	-	19.4	167.8	393.2
1996	-	-	-	7.2	37.1	97.2
1997	-	-	-	34.2	29	198.7
1998	-	-	-	-	139.9	227
1999	-	-	-	-	156.5	521.1
2000	-	-	-	-	156.5	403.7
2001	-	-	-	-	-	279.2
2002	-	-	-	-	100.5	462
2003	-	-	-	-	184.3	872.8
2004	-	-	-	106	289	372.5
2005	-	-	-	138.8	287.5	576.5
2006	-	-	-	-	206.7	541.8
2007	-	-	-	-	547.8	368.7
2008	-	-	-	-	212.1	540
2009	-	-	-	-	322.1	1003.3
2010	-	-	-	-	857.2	472.1
2011	-	-	-	-	200.4	1030.4
2012	-	-	-	-	166.7	583.8
2013	-	_	-	-	82.6	488.7

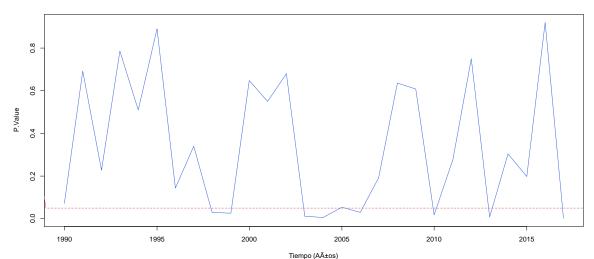
Fuente: Unión Nicaragüense de Cafetaleros (UNICAFE), Ministerio Agropecuario y Forestal (MAGFOR) y Banco Central de Nicaragua (BCN), producción en miles de quintales.

Anexo 5: Prueba de homogeneidad de varianzas en rubro banano.

El test de Levene resalta, que los años (1990-2017) del rubro banano, se caracterizan por sus varianzas no homogéneas (heterocedasticidad), dado que p-valor < 0.05 (significativo), la serie temporal de dicho producto debe ser transformada.

	Df	F valu	ie i	Pr(>F)		
Group	27	2.553	6	6.219e-05		
	308					
Signif. codes:	0 '***'	0.001 '**'	0.01 '*'	0.05 '.'	0.1''	1

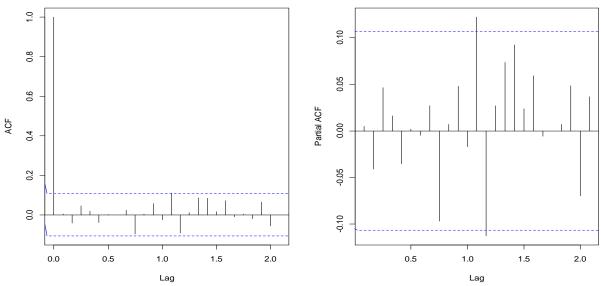
Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).


Anexo 6: Prueba de normalidad en rubro banano.

Al aplicar la prueba de Shapiro- Wilk, a los 28 años en estudio, un pequeño grupo (2.24%) no se distribuye de forma normal.

1990	0.071381461	0.692330187	0.22743545	0.787267681
1994	0.509765645	0.890860149	0.143381109	0.339685039
1998	0.029823644	0.025824228	0.648870072	0.550188839
2002	0.681190925	0.01073209	0.005498285	0.053470109
2006	0.028476938	0.19161035	0.635970651	0.60809451
2010	0.016888365	0.277187028	0.749981158	0.00746454
2014	0.304266772	0.196904196	0.92192673	0.000583164
Signif. codes:	0.0	01 '**' 0.01 '*	0.05 '.' 0	.1'' 1

Anexo 7: Gráfico de prueba de Shapiro- Wilk en rubro banano.


Los años 1998, 1999, 2003, 2004, 2005, 2006, 2013 y 2017 presentan p valores significativos.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

Anexo 8: Gráficos de autocorrelación simple y parcial, rubro banano.

La función de autocorrelación muestra correlaciones que no son significativas, indicando, que los residuos del modelo no siguen un proceso de ruido blanco, en cambio la función de autocorrelación parcial muestra dos rezagos significativos, los cuales se pueden ajustar al aumentar los intervalos de confianza.

Anexo 9: Prueba Ljung-box en rubro banano.

Todos los valores de p para la prueba Ljung-Box Q son mayores que 0.05, lo que nos indica que los rezagos no son dependientes.

X-squared	1.9377	5.3958	14.172	21.268
df	5	10	15	20
p-value	0.8577	0.8632	0.5125	0.3815

Anexo 10: Predicción rubro banano desde 2018 a 2022.

Meses	Años	Predicció n	95 Low	95 High
Jan	2018	1136.15	933.3457	1338.954
Feb	2018	1168.129	936.7832	1399.475
Mar	2018	1233.785	987.775	1479.796
Apr	2018	1202.237	944.9576	1459.517
May	2018	1223.197	955.8201	1490.574
Jun	2018	1237.371	960.4639	1514.278
Jul	2018	1230.379	944.3168	1516.44
Aug	2018	1245.002	950.0861	1539.917
Sep	2018	1262.034	958.5281	1565.541
Oct	2018	1257.812	945.9526	1569.671
Nov	2018	1242.788	922.7945	1562.781
Dec	2018	1229.925	901.9988	1557.85
Jan	2019	1305.463	955.817	1655.109
Feb	2019	1340.145	976.7736	1703.517
Mar	2019	1391.208	1016.331	1766.085
Apr	2019	1368.194	982.6371	1753.75
May	2019	1391.901	996.0932	1787.71
Jun	2019	1403.147	997.3874	1808.907
Jul	2019	1395.88	980.419	1811.341
Aug	2019	1402.438	977.5012	1827.375
Sep	2019	1409.586	975.3807	1843.791
Oct	2019	1411.533	968.2535	1854.812
Nov	2019	1410.837	958.6657	1863.008
Dec	2019	1410.67	949.7781	1871.562
Jan	2020	1439.055	958.3962	1919.713
Feb	2020	1454.831	960.5753	1949.087

Mar	2020	1480.435	974.3676	1986.503
Apr	2020	1471.115	953.9096	1988.321
May	2020	1482.302	954.3117	2010.292
Jun	2020	1489.266	950.7427	2027.79
Jul	2020	1488.043	939.1983	2036.887
Aug	2020	1493.938	934.966	2052.91
Sep	2020	1500.394	931.4757	2069.312
Oct	2020	1501.904	923.2105	2080.597
Nov	2020	1500.9	912.5944	2089.206
Dec	2020	1500.399	902.6356	2098.163
Jan	2021	1522.163	911.2563	2133.069
Feb	2021	1533.78	911.7783	2155.782
Mar	2021	1550.633	918.2319	2183.034
Apr	2021	1546.138	903.6527	2188.624
May	2021	1554.736	902.3653	2207.107
Jun	2021	1560.147	898.0516	2222.242
Jul	2021	1560.355	888.6795	2232.03
Aug	2021	1564.694	883.5745	2245.813
Sep	2021	1569.272	878.8381	2259.706
Oct	2021	1571.741	872.1168	2271.366
Nov	2021	1573.139	864.443	2281.834
Dec	2021	1574.751	857.0982	2292.403
Jan	2022	1586.745	858.0965	2315.392
Feb	2022	1594.077	855.58	2332.574
Mar	2022	1604.389	856.4572	2352.32
Apr	2022	1603.441	846.2767	2360.606
May	2022	1609.242	842.9801	2375.503
Jun	2022	1613.532	838.2882	2388.777
Jul	2022	1615.135	831.0134	2399.257
Aug	2022	1618.979	826.0797	2411.878
Sep	2022	1622.978	821.3977	2424.558
Oct	2022	1625.606	815.4379	2435.775
Nov	2022	1627.538	808.8716	2446.205
Dec	2022	1629.609	802.532	2456.686

Anexo 11: Medidas de error en el modelo del rubro banano.

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
0.291321	102.5454	70.12272	-14.7066	32.61665	0.592235	0.00498
						3

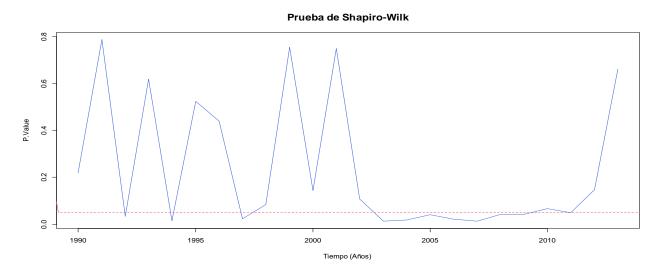
Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

Anexo 12: Prueba de homogeneidad de varianzas en rubro ajonjolí.

El test de Levene resalta, que los años (1990-2013) del rubro ajonjolí, se caracterizan por sus varianzas homogéneas (homocedasticidad), dado que p-valor > 0.05 (no significativo), por lo tanto, no se debe aplicar transformación a la serie de tiempo de este producto.

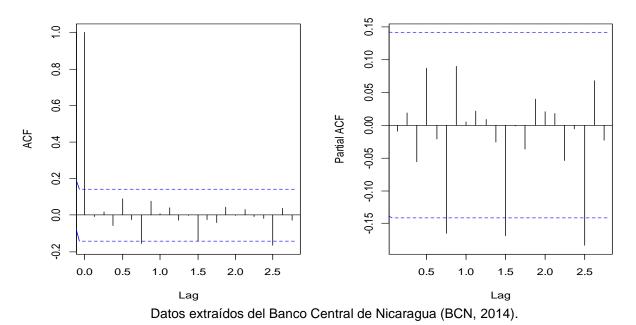
	Df	F va	lue	Pr(>F)		
group	23	1.20	95	0.243		
	168					
Signif. codes:	0 '***'	0.001 '**'	0.01 '*'	0.05 '.'	0.1''	1

Anexo 13: Prueba de normalidad en rubro ajonjolí.


Al aplicar la prueba de Shapiro- Wilk, a los 24 años en estudio, el (3.08%) no se distribuye de forma normal.

1990	0.219355	0.78734788	0.03299578	0.6197738
1994	0.01444933	0.52371939	0.43994898	0.0241034
1998	0.08379249	0.75577357	0.14400873	0.74919415
2002	0.10796854	0.01385162	0.01764845	0.04097422
2006	0.02088913	0.0136887	0.04194042	0.04264098
2010	0.06559716	0.0497511	0.14769419	0.66276493
Signif. code	es: 0 '***'	0.001 '**' 0.01	·*' 0.05 '.'	0.1'' 1

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).


Anexo 14: Gráfico de prueba de Shapiro- Wilk de rubro ajonjolí.

Los años 1992, 1994, 1997, 2003 - 2009 y 2011 presentan p valores significativos.

Anexo 15: Gráficos de autocorrelación simple y parcial, rubro ajonjolí.

La función de autocorrelación muestra correlaciones que no son significativas, indicando, que los residuos del modelo no siguen un proceso de ruido blanco, en cambio la función de autocorrelación parcial muestra tres rezagos significativos, los cuales se pueden ajustar al aumentar los intervalos de confianza.

Anexo 16: Prueba Ljung-box, rubro ajonjolí.

Todos los valores de p para la prueba Ljung-Box Q son mayores que 0.05, lo que nos indica que los rezagos no son dependientes.

X-squared	2.3581	9.0205	14.125	20.397
Df	5	10	15	20
p-value	0.7977	0.5302	0.5161	0.4333

Anexo 17: Predicción rubro ajonjolí desde 2014 a 2022.

Meses	Años	Predicción	95 Low	95 High
Jan	2014	18.25291	-19.1233	55.62912
Feb	2014	15.28749	-22.5459	53.12091
Mar	2014	13.46898	-24.4014	51.33937
Aug	2014	10.58395	-27.2915	48.45936
Sep	2014	11.49816	-26.4562	49.45255
Oct	2014	10.22734	-28.0782	48.53286
Nov	2014	12.07899	-26.8667	51.02468
Dec	2014	16.48747	-23.2969	56.2718
Jan	2015	15.33197	-26.4061	57.07007
Feb	2015	13.05805	-29.7672	55.88331
Mar	2015	12.99583	-30.7466	56.73829
Aug	2015	10.96901	-33.7017	55.63973
Sep	2015	12.13615	-33.5103	57.78256
Oct	2015	11.46298	-35.1964	58.1224
Nov	2015	12.76076	-34.929	60.45049
Dec	2015	12.42498	-36.2958	61.14571
Jan	2016	12.50018	-38.4207	63.42109
Feb	2016	12.45133	-39.6032	64.50584
Mar	2016	12.38311	-40.5954	65.36166
Aug	2016	12.32919	-41.5831	66.24147
Sep	2016	12.29451	-42.6084	67.19746
Oct	2016	12.27491	-43.6669	68.21672
Nov	2016	12.26496	-44.7419	69.27182
Dec	2016	12.26044	-45.8184	70.3393
Jan	2017	12.25868	-46.8866	71.40391
Feb	2017	12.25816	-47.941	72.45733
Mar	2017	12.25812	-48.9795	73.49571
Aug	2017	12.25822	-50.0014	74.51779
Sep	2017	12.25833	-51.0069	75.52351
Oct	2017	12.25841	-51.9966	76.5134
Nov	2017	12.25846	-52.9712	77.48812
Dec	2017	12.25849	-53.9314	78.44838
Jan	2018	12.2585	-54.8778	79.39483
Feb	2018	12.25851	-55.8111	80.32809
Mar	2018	12.25851	-56.7317	81.2487
Aug	2018	12.25851	-57.6402	82.15718
Sep	2018	12.25851	-58.537	83.05399

Oct	2018	12.25851	-59.4226	83.93959
Nov	2018	12.25851	-60.2974	84.81438
Dec	2018	12.25851	-61.1617	85.67875
Jan	2019	12.25851	-62.016	86.53306
Feb	2019	12.25851	-62.8606	87.37765
Mar	2019	12.25851	-63.6958	88.21285
Aug	2019	12.25851	-64.522	89.03897
Sep	2019	12.25851	-65.3393	89.85629
Oct	2019	12.25851	-66.1481	90.6651
Nov	2019	12.25851	-66.9486	91.46564
Dec	2019	12.25851	-67.7412	92.25818
Jan	2020	12.25851	-68.5259	93.04294
Feb	2020	12.25851	-69.3031	93.82015
Mar	2020	12.25851	-70.073	94.59002
Aug	2020	12.25851	-70.8357	95.35276
Sep	2020	12.25851	-71.5915	96.10857
Oct	2020	12.25851	-72.3406	96.85762
Nov	2020	12.25851	-73.0831	97.60009
Dec	2020	12.25851	-73.8191	98.33617
Jan	2021	12.25851	-74.549	99.066
Feb	2021	12.25851	-75.2727	99.78974
Mar	2021	12.25851	-75.9905	100.5076
Aug	2021	12.25851	-76.7026	101.2196
Sep	2021	12.25851	-77.4089	101.9259
Oct	2021	12.25851	-78.1098	102.6268
Nov	2021	12.25851	-78.8052	103.3222
Dec	2021	12.25851	-79.4954	104.0124
Jan	2022	12.25851	-80.1804	104.6974
Feb	2022	12.25851	-80.8604	105.3774
Mar	2022	12.25851	-81.5355	106.0525
Aug	2022	12.25851	-82.2057	106.7227
Sep	2022	12.25851	-82.8712	107.3882
Oct	2022	12.25851	-83.5321	108.0491
Nov	2022	12.25851	-84.1885	108.7055
Dec	2022	12.25851	-84.8404	109.3574

Anexo 18: Medidas de error en el modelo del rubro ajonjolí.

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
0.061455	18.71899	13.76781	-746.682	782.0626	0.76974 9	-0.00961

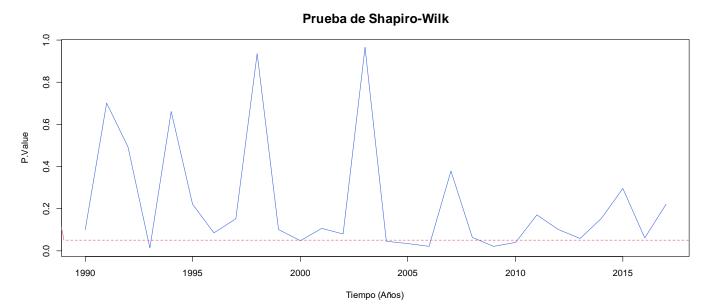
Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

Anexo 19: Prueba de homogeneidad de varianzas en rubro caña de azúcar.

El test de Levene resalta, que los años (1990-2017) del rubro caña de azúcar, se caracterizan por sus varianzas homogéneas (homocedasticidad), dado que p-valor > 0.05 (no significativo), por lo tanto, no se debe aplicar transformación a la serie de tiempo de este producto.

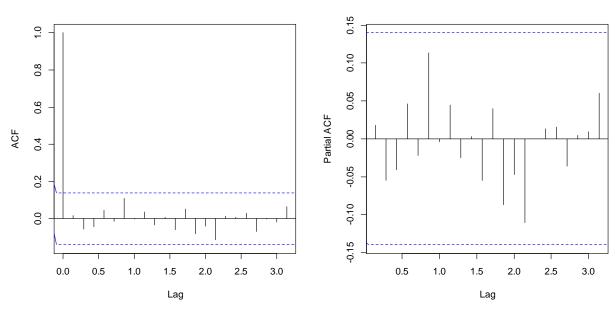
	Df	F va	lue	Pr(>F)		
Group	27	0.73	39	0.8268		
	168					
Signif. codes:	0 '***'	0.001 '**'	0.01 '*'	0.05 '.'	0.1''	1

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).


Anexo 20: Prueba de normalidad en rubro caña de azúcar.

Al aplicar la prueba de Shapiro- Wilk, a los 28 años en estudio, un pequeño grupo (2.24%) no se distribuye de forma normal.

1990	0.10134069	0.70191303	0.49367697	0.01231247
1994	0.66109631	0.22125153	0.08426434	0.15258761
1998	0.93793803	0.1017218	0.04829022	0.10658834
2002	0.07855233	0.96492533	0.04478973	0.03356528
2006	0.02060994	0.37888787	0.06501052	0.02044609
2010	0.04036890	0.17086342	0.10218005	0.05834627
2014	0.15333594	0.29653401	0.06023959	0.22019739
Signif. co	odes: 0 '***'	0.001 '**'	0.01 '*' 0.0	5 '.' 0.1 ' ' 1


Anexo 21: Gráfico de prueba de Shapiro- Wilk en rubro caña de azúcar.

Los años 1993, 2000, 2004, 2005, 2006, 2009, 2010 y 2013 presentan p valores significativos.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

Anexo 22: Gráficos de autocorrelación simple y parcial, rubro caña de azúcar.

Anexo 23: Prueba Ljung-box, rubro banano.

Todos los valores de p para la prueba Ljung-Box Q son mayores que 0.05, lo que nos indica que los rezagos no son dependientes.

X-squared	1.5337	4.4592	10.301	11.577
df	5	10	15	20
p-value	0.9091	0.9243	0.8004	0.9299

Anexo 24: Predicción rubro caña de azúcar desde 2018 a 2022.

Meses	Años	Predicción	95 Low	95 High
Jan	2018	1481.2488	1160.2319	1802.2658
Feb	2018	1251.3137	926.6932	1575.9342
Mar	2018	1295.743	969.0943	1622.3917
Apr	2018	1357.8462	1030.0515	1685.6409
May	2018	611.402	282.9585	939.8455
Nov	2018	562.2203	233.409	891.0316
Dec	2018	1208.2042	879.1843	1537.2242
Jan	2019	1497.8387	1138.2669	1857.4105
Feb	2019	1277.932	917.339	1638.525
Mar	2019	1331.8006	970.6291	1692.9721
Apr	2019	1355.4792	993.9797	1716.9787
May	2019	635.4121	273.7264	997.0977
Nov	2019	595.3334	233.5421	957.1246
Dec	2019	1252.5365	890.6853	1614.3877
Jan	2020	1529.4512	1152.8984	1906.0039
Feb	2020	1309.3351	932.3208	1686.3494
Mar	2020	1363.046	985.77	1740.3221
Apr	2020	1386.6058	1009.1811	1764.0304
May	2020	666.4491	288.9401	1043.958
Nov	2020	626.3029	248.7461	1003.8597
Dec	2020	1283.4552	905.8712	1661.0391
Jan	2021	1560.3315	1169.0455	1951.6175
Feb	2021	1340.1866	948.5103	1731.8629
Mar	2021	1393.8758	1001.978	1785.7735
Apr	2021	1417.4191	1025.3957	1809.4425
May	2021	697.25	305.1553	1089.3448
Nov	2021	657.0946	264.9594	1049.2298

Dec	2021	1314.2399	922.0817	1706.3981
Jan	2022	1591.1109	1185.797	1996.4248
Feb	2022	1370.962	965.2783	1776.6458
Mar	2022	1424.6482	1018.7546	1830.5418
Apr	2022	1448.1892	1042.1765	1854.202
May	2022	728.0185	321.9382	1134.0988
Nov	2022	687.8617	281.743	1093.9804
Dec	2022	1345.0061	938.8656	1751.1465

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

Anexo 25: Medidas de error en el modelo del rubro caña de azúcar.

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
3.174239	158.694	117.7351	-40.8291	57.20356	0.820511	0.017678

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2018).

Anexo 26: Prueba de homogeneidad de varianzas en rubro café.

El test de Levene resalta, que los años (1990-2013) del rubro café, se caracterizan por sus varianzas homogéneas (homocedasticidad), dado que p-valor > 0.05 (no significativo), por lo tanto, no se debe aplicar transformación a la serie de tiempo de este producto.

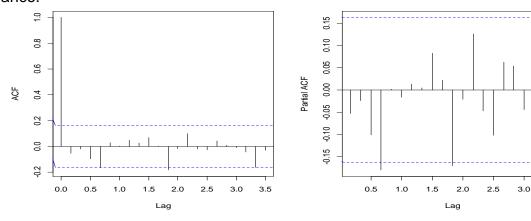
	Df	F val	lue	Pr(>F)		
Group	23	0.86	98	0.6374		
	120					
Signif. codes:	0 '***'	0.001 '**'	0.01 '*'	0.05 '.'	0.1''	1

Anexo 27: Prueba de normalidad en rubro café.

Al aplicar la prueba de Shapiro- Wilk, a los 24 años en estudio, un pequeño grupo (0.62%) no se distribuye de forma normal.

[Shapiro-Wilk normality test].

1990	0.695387293	0.091773985	0.732411801	0.002215136
1994	0.402133826	0.483027911	0.510853319	0.062199971
1998	0.121557388	0.135255335	0.420411609	0.856290845
2002	0.108399376	0.099454064	0.13452616	0.613399444
2006	0.269191199	0.470157677	0.035258074	0.03591039
2010	0.392567013	0.080407037	0.119440258	0.576844213
Signif. codes:	0 '*** 0.00	1 '**' 0.01 '*'	0.05 '.' 0.1	'' 1


Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

Anexo 28: Gráfico de prueba de Shapiro- Wilk en rubro café.

Los años 1993, 2008 y 2009 presentan p valores significativos.

Anexo 29: Gráficos de autocorrelación simple y parcial, rubro café.

La función de autocorrelación y función de autocorrelación parcial muestran dos rezagos con correlaciones significativas, seguida de correlaciones que no son significativas, indicando, que los residuos del modelo no siguen un proceso de ruido blanco.

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

3.5

Anexo 30: Prueba Ljung-box, rubro café.

Todos los valores de p para la prueba Ljung-Box Q son mayores que 0.05, lo que nos indica que los rezagos no son dependientes.

X-squared	6.1867	7.451	14.624	19.736
df	5	10	15	20
p-value	0.2885	0.6823	0.4788	0.4746

Anexo 31: Predicción rubro café desde 2014 a 2022.

Meses	Años	Predicción	95 Low	95 High
Jan	2014	492.7562	158.490316	827.0221
Feb	2014	344.4805	8.239877	680.7211
Mar	2014	124.3635	-211.879819	460.6069
Apr	2014	249.7289	-86.778456	586.2363
Nov	2014	292.4754	-44.353975	629.3049
Dec	2014	524.975	187.763426	862.1866
Jan	2015	482.4525	133.394026	831.5109

Feb	2015	346.9377	-4.329108	698.2045
Mar	2015	143.5438	-207.750333	494.838
Apr	2015	244.3373	-107.208388	595.883
Nov	2015	304.9381	-46.919479	656.7957
Dec	2015	507.2819	154.821885	859.7418
Jan	2016	473.0046	111.392244	834.6169
Feb	2016	348.071	-15.844662	711.9867
Mar	2016	161.1657	-202.817553	525.149
Apr	2016	241.5783	-122.615606	605.7722
Nov	2016	313.8699	-50.615755	678.3555
Dec	2016	492.2776	126.999187	857.5561
Jan	2017	464.3673	91.773443	836.9611
Feb	2017	348.3686	-26.531875	723.2691
Mar	2017	177.1743	-197.840458	552.189
Apr	2017	240.8614	-134.311949	616.0348
Nov	2017	320.2173	-55.226305	695.6609
Dec	2017	479.3072	102.922025	855.6924
Jan	2018	456.4623	74.058159	838.8664
Feb	2018	348.1706	-36.487863	732.829
Mar	2018	191.6143	-193.205626	576.4343
Apr	2018	241.6918	-143.235608	626.6193
Nov	2018	324.687	-60.492067	709.866
Dec	2018	467.9088	81.681746	854.1358
Jan	2019	449.202	57.900079	840.5038
Feb	2019	347.7072	-45.766102	741.1805
Mar	2019	204.5866	-189.092763	598.2659
Apr	2019	243.6645	-150.079085	637.4081
Nov	2019	327.8027	-66.17843	721.7838
Dec	2019	457.7556	62.657874	852.8533
Jan	2020	442.5022	43.037333	841.9671
Feb	2020	347.129	-54.410183	748.6681
Mar	2020	216.2189	-185.566542	618.0044
Apr	2020	246.4541	-155.3633	648.2716
Nov	2020	329.9497	-72.096078	731.9955
Dec	2020	448.6148	45.414689	851.8149
Jan	2021	436.2885	29.266286	843.3108
Feb	2021	346.5296	-62.465473	755.5247
Mar	2021	226.648	-182.629059	635.9251
Apr	2021	249.8041	-159.484312	659.0925
Nov	2021	331.4096	-78.102499	740.9216
Dec	2021	440.3182	29.637961	850.9985

Jan	2022	430.4981	16.425972	844.5702
Feb	2022	345.9636	-69.98141	761.9086
Mar	2022	236.0081	-180.250193	652.2664
Apr	2022	253.5148	-162.744853	669.7745
Nov	2022	332.3866	-84.096063	748.8692
Dec	2022	432.7421	15.095008	850.3893

Fuente: Datos extraídos del Banco Central de Nicaragua (BCN, 2014).

Anexo 32: Medidas de error en el modelo del rubro café.

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
22.98733	166.3501	119.9145	-75.5577	110.0688	0.83454	-0.05303
					6	